
TOWARDS ROBUST REPRESENTATION LEARNING
AND BEYOND

by
Cihang Xie

A dissertation submitted to Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
October, 2020

© 2020 Cihang Xie
All Rights Reserved

Abstract

Deep networks have reshaped the computer vision research in recent years. As fueled

by powerful computational resources and massive amount of data, deep networks

now dominate a wide range of visual benchmarks. Nonetheless, these success stories

come with bitterness—an increasing amount of studies has shown the limitations of

deep networks on certain testing conditions like small input changes or occlusion.

These failures not only raise safety and reliability concerns on the applicability of deep

networks in the real world, but also demonstrate the computations performed by the

current deep networks are dramatically different from those by human brains.

In this dissertation, we focus on investigating and tackling a particular yet chal-

lenging weakness of deep networks—their vulnerability to adversarial examples. The

first part of this thesis argues that such vulnerability is a much more severe issue than

we thought—the threats from adversarial examples are ubiquitous and catastrophic.

We then discuss how to equip deep networks with robust representations for defending

against adversarial examples. We approach the solution from the perspective of neural

architecture design, and show incorporating architectural elements like feature-level

denoisers or smooth activation functions can effectively boost model robustness. The

last part of this thesis focuses on rethinking the value of adversarial examples. Rather

than treating adversarial examples as a threat to deep networks, we take a further step

on uncovering adversarial examples can help deep networks improve the generalization

ability, if feature representations are properly disentangled during learning.

ii

Thesis Readers

Dr. Alan L. Yuille (Primary Advisor)
Bloomberg Distinguished Professor
Department of Computer Science
Johns Hopkins University

Dr. Gregory D. Hager
Mandell Bellmore Professor
Department of Computer Science
Johns Hopkins University

Dr. Quoc V. Le
Principal Research Scientist
Google Brain

iii

Acknowledgements

First of all, I would like to thank my Ph.D. advisor, Prof. Alan Yuille, for his insightful

guidance and continuous support over the last five years. I am deeply appreciated

that Alan provided me with hands-on mentoring when I was a newbie computer

vision researcher. Under his supervision and encouragement, I began to gain interests

in exploring the limitations of deep networks, which later inspired me to explore a

relatively new research direction—adversarial learning. This direction became the

core path throughout my Ph.D. career, during which I have published a series of

solid research works. Without Alan’s mentorship, I could have never got a chance

to make such achievements. Besides, I would like to thank Wei Shen, Yinzhi Cao,

Vishal Patel, Gregory Hager, Alex Szalay and Rama Chellappa for serving on my

GBO/thesis committee and providing valuable suggestions.

Next, I feel extremely fortunate to have two amazing research internships, one at

Facebook AI Research with Kaiming He, Laurens van der Maaten and Yuxin Wu,

and the other at Google with Quoc Le, Mingxing Tan, Boqing Gong and Jiang Wang.

These two internships significantly broadened my research horizons and enabled me to

establish a more mature and profound perspective regarding this area. Specifically, I

would like to thank Kaiming He and Quoc Le for teaching me how to think critically,

conduct high impact research and improve writing skills, and keeping supporting my

career even after my internships.

I would also like to thank all people who have helped me build my academic

career, including Ming-Hsuan Yang, Yong Jae Lee, Tengyu Ma, Fei-Fei Li, Nuno

iv

Vasconcelos and Ian Goodfellow for providing useful suggestions to my academic

job search preparation, and Yingwei Li, Xinyun Chen, Adam Kortylewski, Song Bai,

Zhaowei Cai, Andrei Barbu, Wieland Brendel, Bo Li, Andrea Vedaldi, Luc Van Gool,

Philip Torr and Dawn Song for supporting my workshop applications.

I feel so excited to get a chance to work with a lot of wonderful colleagues at

CCVL in the last five years, including Zhishuai Zhang, Jianyu Wang, Lingxi Xie, Jun

Zhu, Zhou Ren, Siyuan Qiao, Chenglin Yang, Yucheng Han, Hongru Zhu, Yuhui Xu,

Jieru Mei, Peng Tang, Yixiao Zhang, Qihang Yu, Yan Wang, Zhuowan Li, Yongyi

Lu, Chenxi Liu, Alex Wong, Fengze Liu, Qing Liu, Yingda Xia, Xuan Dong, Yutong

Bai, Weichao Qiu, Huiyu Wang, Angtian Wang, Chenxu Luo, Zihao Xiao, Fangting

Xia, Xianjie Chen, Vittal Premachandran, Ehsan Jahangiri, Jieneng Chen, Yi Zhang,

Xiao Chu, Shuhao Fu, Chen Wei, Junhua Mao, Michelle Shu, Liang-Chieh Chen, Peng

Wang, Zhuotun Zhu, Qi Chen, Christian Cosgrove, Minghui Liao, Zefan Li, Jiteng

Mu, Xiaochen Lian, Zhe Ren, Yuan Gao and many others.

The last part is dedicated to acknowledging my family members. I am a first-

generation graduate student, and I feel so grateful to my parents, Jishan Xie and

Chunxiang Zhang, for unconditionally supporting me to pursue my academic dreams.

I would also like to thank my girlfriend, Yuyin Zhou, for years of company, in both the

academic research and our daily life. Additionally, I want to thank my kittens, Lucky,

Ben and Rachel, for decorating my “boring” life during this COVID-19 pandemic.

v

To all my family members for their unreserved and unconditional support.

vi

Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

Contents . vii

List of Tables . xii

List of Figures . xiv

Chapter 1 Introduction . 1

1.1 Exploring Adversarial Vulnerability 3

1.2 Exploring Adversarial Defenses . 4

1.3 Exploring Benefits of Robust Learning 5

I Adversarial Vulnerability of Deep Neural Networks 8

Chapter 2 Adversarial Examples for Semantic Segmentation and

Object Detection . 9

2.1 Introduction . 10

2.2 Related Work . 12

2.3 Generating Adversarial Examples . 13

2.3.1 Dense Adversary Generation 14

vii

2.3.2 Selecting Input Proposals for Detection 16

2.3.3 Quantitative Evaluation . 17

2.3.4 Fancy Adversarial/Fooling Images 18

2.3.5 Diagnostics . 19

2.4 Transferring Adversarial Perturbations 22

2.4.1 Cross-Training Transfer . 22

2.4.2 Cross-Network Transfer . 23

2.4.3 Cross-Task Transfer . 24

2.4.4 Combining Heterogeneous Perturbations 25

2.4.5 Black-Box Attack . 26

2.5 Universal Physical Camouflage Attacks 27

2.6 Summary . 28

Chapter 3 Improving Transferability of Adversarial Examples with

Input Diversity . 29

3.1 Introduction . 30

3.2 Related Work . 32

3.3 Approach . 34

3.3.1 Family of Fast Gradient Sign Methods 34

3.3.2 Motivation . 35

3.3.3 Diverse Input Patterns . 36

3.3.4 Relationships between Different Attacks 37

3.3.5 Attacking an Ensemble of Networks 38

3.4 Experiments . 38

3.4.1 Experiment Setup . 38

3.4.2 Attacking a Single Network 39

3.4.3 Attacking an Ensemble of Networks 41

3.4.4 Ablation Studies . 43

viii

3.4.5 NIPS 2017 Adversarial Competition 46

3.4.6 Extensions . 47

3.5 Summary . 49

II Towards Deep Networks Robust to Adversarial Attacks . . 50

Chapter 4 Feature Denoising for Improving Adversarial Robustness 51

4.1 Introduction . 52

4.2 Related Work . 54

4.3 Feature Noise . 55

4.4 Denoising Feature Maps . 57

4.4.1 Denoising Block . 57

4.4.2 Denoising Operations . 58

4.5 Adversarial Training . 61

4.6 Experiments . 62

4.6.1 Against White-box Attacks 63

4.6.2 Against Black-Box Attacks . 66

4.6.3 Denoising Blocks in Non-Adversarial Settings 69

4.7 Summary . 71

Chapter 5 Smooth Adversarial Training 72

5.1 Introduction . 73

5.2 Related Works . 75

5.3 ReLU Weakens Adversarial Training 76

5.3.1 Adversarial Training . 76

5.3.2 How Gradient Quality Affects Adversarial Training? 77

5.3.3 Can Other Training Enhancements Remedy ReLU’s Gradient

Issue? . 80

5.4 Smooth Adversarial Training . 81

ix

5.4.1 Adversarial Training with Smooth Activation Functions 81

5.4.2 Ruling Out the Effect From x < 0 83

5.4.3 Case Study: Stabilizing Adversarial Training with ELU using

CELU . 84

5.5 Exploring the Limits of Smooth Adversarial Training 85

5.5.1 Scaling-up ResNet . 85

5.5.2 SAT with EfficientNet . 87

5.6 Summary . 89

Chapter 6 Intriguing Properties of Adversarial Training at Scale . 90

6.1 Introduction . 91

6.2 Related Work . 93

6.3 Adversarial Training Framework . 94

6.4 Exploring Normalization Techniques in Adversarial Training 95

6.4.1 On the Effects of Clean Images in Adversarial Training 95

6.4.2 The Devil is in the Batch Normalization 97

6.4.3 Revisiting Statistics Estimation of BN 103

6.4.4 Beyond Adversarial Robustness 104

6.5 Going Deeper in Adversarial Training 105

6.6 Summary . 107

III Robust Representation Learning Improves Generalization 108

Chapter 7 Adversarial Examples Improve Image Recognition . . . 109

7.1 Introduction . 110

7.2 Related Work . 112

7.3 A Preliminary Way to Boost Performance 113

7.4 Approach . 115

7.4.1 Adversarial Training . 115

x

7.4.2 Disentangled Learning via An Auxiliary BN 116

7.4.3 AdvProp . 118

7.5 Experiments . 119

7.5.1 Experiments Setup . 119

7.5.2 ImageNet Results and Beyond 120

7.5.3 Comparisons to Adversarial Training 123

7.5.4 Ablations . 127

7.6 Summary . 130

Chapter 8 Discussion and Conclusion 131

References . 134

Vita . 148

xi

List of Tables

Table 2.1 Semantic segmentation (measured by mIOU, %) and object

detection (measured by mAP, %) results of different networks. 18

Table 2.2 Transfer results for detection networks. 22

Table 2.3 Transfer results for segmentation networks. 23

Table 2.4 Transfer results between detection networks and segmentation

networks. 24

Table 3.1 The success rates on seven networks where we attack a single

network. 39

Table 3.2 The success rates on seven networks where we attack a single

network using C&W attack. 41

Table 3.3 The success rates of ensemble attacks. 42

Table 3.4 The success rates on top defense solutions and official baselines

from NIPS 2017 adversarial competition. 46

Table 4.1 Ablation: denoising block design for defending against white-box

attacks on ImageNet. 66

Table 4.2 Defense against black-box attacks on ImageNet. 67

Table 4.3 Accuracy on clean images in the ImageNet validation set when

trained on clean images. 70

Table 5.1 ReLU significantly weakens adversarial training. 78

xii

Table 5.2 Robustness comparison between ELU (non-smooth when α ̸= 1)

and CELU (always smooth ∀α). 83

Table 5.3 Scaling-up ResNet in SAT. 86

Table 5.4 Comparison to the previous state-of-the-art. 89

Table 6.1 MBN statistics characterize model performance. 101

Table 6.2 Enforcing a consistent behavior of BN at the training stage

and the testing stage significantly boosts adversarial robustness.103

Table 7.1 AdvProp significantly boost models’ generalization ability on

ImageNet-C, ImageNet-A and Stylized-ImageNet. 122

Table 7.2 ImageNet performance of models trained with AdvProp at

different attack strength. 123

Table 7.3 Performance comparison between settings that use either the

main BNs and auxiliary BNs on ImageNet. 125

Table 7.4 AdvProp demonstrates much stronger generalization ability

on distorted ImageNet datasets (e.g., ImageNet-C) than the

adversarial training baseline for large models (e.g., EfficientNet-

B6 and EfficientNet-B7). 126

Table 7.5 Fine-grained AdvProp substantially boosts model accuracy on

ImageNet, especially for small models. 127

Table 7.6 Both AutoAugment and AdvProp improves model performance

over the Inception-style pre-processing baseline on ImageNet. 128

Table 7.7 ImageNet performance when trained with different attackers. 128

Table 7.8 Performance comparison among vanilla training, adversarial

training and AdvProp on ImageNet. 129

xiii

List of Figures

Figure 1.1 Two failure cases of deep networks. 2

Figure 2.1 An Adversarial example for semantic segmentation and object

detection. 11

Figure 2.2 Fancy examples generated by DAG for semantic segmentation. 19

Figure 2.3 The mAP of using adversarial perturbations on FR-ZF-07 to

attack FR-ZF-07 and FR-ZF-0712, with respect to the IOU

rate. 20

Figure 2.4 The convergence of DAG measured by the number of active

targets. 20

Figure 2.5 Transferable adversarial examples for semantic segmentation

and object detection. 21

Figure 2.6 The adversarial example (computed by r1 + r3 + r5 + r7, see

Table 2.4) that simultaneously fools four different networks. 25

Figure 2.7 Adversarial camouflage patterns for preventing cars/persons

from being correctly detected by deep networks in the physical

world. 27

Figure 3.1 The comparison of success rates using three different attacks. 31

Figure 3.2 Relationships between different attacks. 37

Figure 3.3 Visualization of randomly selected clean images and their

corresponding adversarial examples. 40

xiv

Figure 3.4 The success rates of DI2-FGSM (a) and M-DI2-FGSM (b)

when varying the transformation probability p. 43

Figure 3.5 The success rates of DI2-FGSM (a) and M-DI2-FGSM (b)

when varying the total iteration number N 44

Figure 3.6 The success rates of DI2-FGSM (a) and M-DI2-FGSM (b)

when varying the step size α. 45

Figure 4.1 Feature map in the res3 block of an ImageNet-trained ResNet-

50 applied on a clean image (left) and on its adversarially

perturbed counterpart (right). 52

Figure 4.2 More examples similar to Figure 4.1. 53

Figure 4.3 Adversarial images and their feature maps before (left) and

after (right) the denoising operation (blue box in Figure 4.4). 56

Figure 4.4 A generic denoising block. 58

Figure 4.5 A block with non-local means as its denoising operation. . . 60

Figure 4.6 Defense against white-box attacks on ImageNet. 63

Figure 4.7 Ablation: denoising variants for defending against white-box

attacks on ImageNet. 65

Figure 4.8 CAAD 2018 results of the adversarial defense track. 69

Figure 5.1 The visualization of ReLU and Parametric Softplus. 74

Figure 5.2 Visualizations of smooth activation functions and their deriva-

tives. 82

Figure 5.3 Smooth activation functions improve adversarial training. . . 83

Figure 5.4 Scaling-up EfficientNet in SAT. 88

Figure 6.1 The relationship between model robustness and the portion

of clean images used for training. 96

Figure 6.2 Comprehensive robust evaluation on ImageNet. 97

xv

Figure 6.3 Disentangling the mixture distribution for normalization se-

cures model robustness. 98

Figure 6.4 Standard BN (left) estimates normalization statistics on the

mixture distribution. 99

Figure 6.5 Statistics of running mean and running variance of MBN on

randomly sampled 20 channels in a ResNet-152’s res3 block. 100

Figure 6.6 Comparison of batch statistics and running statistics of BN

on randomly sampled 20 channels in a ResNet-152’s res3 block.102

Figure 6.7 Compared to traditional image classification tasks, adversarial

training exhibits a stronger demand on deeper networks. . . 106

Figure 7.1 AdvProp improves image recognition. 111

Figure 7.2 Two take-home messages from the experiments on ImageNet. 114

Figure 7.3 Comparison between (a) traditional BN usage and (b) the

utilization of auxiliary BN. 117

Figure 7.4 AdvProp boosts model performance over the vanilla training

baseline on ImageNet. 121

Figure 7.5 AdvProp substantially outperforms adversarial training [64]

on ImageNet, especially for small models. 124

xvi

Chapter 1

Introduction

Deep networks are highly successful in computer vision. Compared to traditional

methods [10], [18], [40], [97], [125], [148], deep networks not only ease human efforts on

feature engineering, but also yield significantly better performance on a wide range of

visual benchmarks [24], [60], [61], [72], [99], [122], [168], [183]. Even eight years after

the seminal work AlexNet [99], our exploration of deep networks has not yet came to

an end, e.g., deep networks keep achieving better performance when the advanced

neural architectures are applied [118], [167], [197], [240], [250], [251], or the amount of

training data is scaled [15], [98], [129], [192], [231].

However, interestingly, deep networks unexpectedly show catastrophic failures

when testing beyond the traditional visual benchmarks [59], [74], [78], [79], [135],

[170], [196], [207]. For examples, deep networks are sensitive to small changes in the

input data (i.e., adversarial examples, Figure 1.1(a)), incapable of generalizing well

to previously unseen objects, easily fooled by occlusion (Figure 1.1(b)) or viewpoint

variations, etc. Note that these scenarios generally cannot confuse human observers.

Such failures not only raise profound safety and reliability concerns on the deployment

of deep networks based cyber-physical systems, but also suggest that deep networks

prone to exploit unintended shortcuts during learning [58], which is fundamentally

different from the learning paradigm of the human perception system.

1

ChihuahuaKing Penguin Adversarial Perturbation

Deep
Networks

king penguin adversarial perturbation chihuahuaking penguin adversarial perturbation chihuahua
(a) Adversarial examples

(b) Occlusion patterns

Figure 1.1. Two failure cases of deep networks. Top panel : by adding adversarial
perturbations to a king penguin image, the resulted example can fool deep networks to
output the wrong prediction, i.e., chihuahua. Bottom panel : The occluding monitor/guitar
turns a penguin/monkey be to be wrongly detected as a person (with a high confidence
score) by deep networks. While in both scenarios, these images generally cannot confuse
human observers.

Towards the goal of developing human-level recognition systems, in this thesis,

we focus on identifying, understanding and eliminating a particular yet challenging

weakness of deep networks—their vulnerability to adversarial examples. Specifically,

three aspects are explored: (1) We first investigate how severe that deep networks

are exposed to adversarial examples, including the existence of adversarial examples

beyond the image classification task and the transferability of adversarial examples

across different network architectures; (2) We next discuss how deep networks, with

different neural architecture designs, can effectively learn robust feature representations

for defending against adversarial examples; (3) Lastly a showcase is provided to

demonstrate the positive effects of adversarial examples on the representation learning

of deep networks. We will elaborate these three aspects in the following sections.

2

1.1 Exploring Adversarial Vulnerability

The vulnerability of deep networks to adversarial examples is first discovered in [196].

To craft adversarial examples, we need to optimize the following objective:

max
ϵ∈S

L(f(θ, x + ϵ), y), (1.1)

where L(·) is the loss function, f(·) is a deep network with parameter θ, x is an

image with the ground-truth label y, ϵ is the adversarial perturbation, and S is the

allowed perturbation range. With a successful optimization of this objective, the deep

network will be fooled, i.e., the network prediction f(θ, x + ϵ) will be different from

the ground-truth label y. To ensure the generated adversarial example (i.e., x + ϵ) is

human-imperceptible, we usually restrict the perturbation range S to be small.

Though the discovery of deep networks’ adversarial vulnerability can be dated

back as early as 2013 [196], the severity of such issue is just extensively explored

and discussed until most recently. For examples, early works in this direction study

adversarial examples only in the image classification setting, and generally assume

adversarial examples cannot effectively transfer across different network architectures.

In this thesis, we challenge these traditional beliefs based on the following findings:

Adversarial examples for detection and segmentation. In Chapter 2, we

present the first work to demonstrate the adversarial vulnerability of deep networks be-

yond the image classification task—adversarial examples can also exist in the complex

and realistic computer vision scenarios like object detection and semantic segmentation

[227]. Specifically, we first to define a dense set of targets inside each image (e.g.,

targets are object proposals in detection and image pixels in segmentation), and

then to optimize the loss function to produce incorrect predictions on all the targets

simultaneously. We also extend this work to the real-world setting [86], where we

create the first universal adversarial pattern for attacking advanced object detectors

in the physical world.

3

Transferable adversarial examples. One intriguing property of adversarial exam-

ples is the transferability—adversarial examples generated on one specific model can

remain malicious to others with certain probability. The existence of transferable ad-

versarial examples indicates that networks (though with distinct architecture designs)

tend to make similar mistakes. Nonetheless, such transferability is relatively weak

as demonstrated in previous literature [64], [141], [196]. In Chapter 3, we focus on

improving the transferability of adversarial examples. By noticing the overfitting of

attackers to a specific deep network is the main factor that hampers transferability,

we present a data augmentation based method to alleviate this optimization issue

for boosting transferability [230]. We also briefly discuss the other explorations (i.e.,

model augmentation [113] or enforcing locally smoothed adversarial perturbations

[112]) to further the transferability of adversarial examples.

1.2 Exploring Adversarial Defenses

The aforementioned studies on deep networks’ vulnerability in turn urge the progress

on developing robust models against adversarial examples. Studying model robustness

not only helps to alleviate the security concerns on deep networks based cyber-physical

systems, but also encourages researchers to explore the missing recipes in the current

deep network framework. To secure robustness, our countermeasures for adversarial

examples are listed as the following.

To defend against adversarial examples, we mainly explore the effects of different

architectures designs on helping networks gain robust feature representations. In

Chapter 4, we notice adversarial perturbations on images lead to noise in the features

constructed by these networks, therefore explore feature denoising approaches to im-

prove the robustness of deep networks against adversarial examples [228]. Specifically,

our networks contain blocks that denoise the features using non-local means or other

filters; the entire networks are trained end-to-end. When combined with adversarial

4

training, our feature denoising network achieved the state-of-the-art robustness

against adversarial examples on ImageNet in 2019.

In Chapter 5, we next explore the effects of activation functions in the context

of adversarial training. We note that the widely-used ReLU activation function

significantly weakens adversarial training due to its non-smooth nature, therefore

develop smooth adversarial training (SAT), in which we replace ReLU with its smooth

approximations (e.g., SILU, softplus, SmoothReLU) to strengthen adversarial training

[225]. The purpose of smooth activation functions in SAT is to allow it to find harder

adversarial examples and compute better gradient updates during adversarial training.

Compared to previous adversarial defense works, SAT is the first work that can

improve adversarial robustness for "free".

Though adversarial training offers models with strong robustness, our understand-

ing to adversarial training is still limited, especially on large scale datasets, e.g.,

previous works show adversarial training may cannot secure model robustness on

ImageNet. In Chapter 6, we present the first work that delves into the key ingredients

of training deep networks adversarially at scale, and reveals two intriguing properties

[229]: (1) conducting normalization in the right manner is essential for training robust

models; and (2) our so-called “deep” networks are still too shallow for adversarial

learning. These findings not only serve as a guideline for instructing later works on

training robust models at scale, but also provides empirical supports on the theoretical

study of the relationship between model complexity and robust optimization.

1.3 Exploring Benefits of Robust Learning

Traditional studies generally consider adversarial examples as a threat to deep networks,

and massive efforts have been made to increasing model robustness. In Chapter 7, we

stand on an opposite perspective—adversarial examples can help deep networks to learn

5

more generalizable feature presentations. Specifically, we propose an enhanced training

scheme, named AdvProp, which treats adversarial examples as additional examples

(to clean images), to prevent overfitting. Key to AdvProp is the usage of a separate

auxiliary batch norm for adversarial examples, as they have different underlying

distributions to normal examples. AdvProp is the first work that demonstrates

adversarial examples can improve (rather than degrade) image recognition on large

scale datasets. The best model with AdvProp reports the state-of-the-art 85.5%

ImageNet top-1 accuracy without extra data. This result even surpasses the work

(with 84.4% ImageNet top-1 accuracy) [129] which is trained with 3.5B Instagram

images (∼3000× more than ImageNet) and ∼9.4× more parameters.

This work successfully demonstrating the value of studying adversarial examples

beyond the traditional model security domain—adversarial examples indeed can help

recognition models. Besides, we would like to highlight that adversarial example

has the potential to be a more general way for augmenting data—it can be useful

everywhere (e.g., language, structured data), not just for image recognition.

The following publications compose the main ideas in this dissertation.

1. Chapter 2 - Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi

Xie, Alan Yuille, “Adversarial Examples for Semantic Segmentation and Object

Detection,” in ICCV, 2017.

2. Chapter 3 - Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang,

Zhou Ren, Alan Yuille, “Improving Transferability of Adversarial Examples with

Input Diversity,” in CVPR, 2019.

3. Chapter 4 - Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille,

Kaiming He, “Feature Denoising for Improving Adversarial Robustness,” in

CVPR, 2019.

6

4. Chapter 5 - Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, Quoc Le,

“Smooth Adversarial Training,” in Arxiv, 2020

5. Chapter 6 - Cihang Xie, Alan Yuille, “Intriguing Properties of Adversarial

Training at Scale,” in ICLR, 2020.

6. Chapter 7 - Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille,

Quoc Le, “Adversarial Examples Improve Image Recognition,” in CVPR, 2020.

7

Part I

Adversarial Vulnerability of
Deep Neural Networks

8

Chapter 2

Adversarial Examples for Semantic
Segmentation and Object
Detection

It has been well demonstrated that adversarial examples, i.e., natural images with

visually imperceptible perturbations added, cause deep networks to fail on image

classification. In this chapter, we extend adversarial examples to semantic segmentation

and object detection, which are much more challenging than image classification. Our

observation is that both segmentation and detection are based on classifying multiple

targets on an image (e.g., the target is a pixel or a receptive field in segmentation,

and an object proposal in detection). This inspires us to optimize a loss function over

a set of pixels/proposals for generating adversarial perturbations. Based on this idea,

we propose a novel algorithm, Dense Adversary Generation (DAG), which generates a

large family of adversarial examples, and applies to a wide range of state-of-the-art

deep networks for segmentation and detection. We also find the generated adversarial

perturbations can be transferred across networks with different training data, based

on different architectures, and even for different recognition tasks. In particular,

adversarial examples transfer the best across networks with the same architecture

than in other cases. Besides, summing up heterogeneous perturbations leads to better

transferability, which provides an effective solution of black-box adversarial attack.

9

2.1 Introduction

Deep networks [72], [84], [99], [183], [194] have become the de facto solution for a wide

range of visual recognition problems. Based on a large-scale labeled dataset such as

ImageNet [173] and powerful computational resources like modern GPUs, it is possible

to train a hierarchical deep network to capture different levels of visual patterns. Deep

networks are also capable of generating transferable features for different tasks such as

image classification [45] and instance retrieval [166], or being fine-tuned to deal with

a wide range of vision tasks, including object detection [39], [60], [61], [117], [168],

semantic segmentation [24], [122], [247], boundary detection [179], [233], etc.

Despite their success in visual recognition and feature representation, deep networks

are often sensitive to small perturbations to the input image. Szegedy et al. [196]

showed that adding visually imperceptible perturbations can result in failures for

image classification. These perturbed images, often called adversarial examples, are

considered to fall on some areas in the large, high-dimensional feature space which

are not explored in the training process. Investigating adversarial examples not only

helps us understand the working mechanism of deep networks, but also provides

opportunities to improve the robustness of network training.

In this chapter, we go one step further by generating adversarial examples for

semantic segmentation and object detection, and showing the transferability of them.

To the best of our knowledge, this topic has not been systematically studied (e.g., on a

large dataset) before. Note that these tasks are much more challenging, as we need to

consider orders of magnitude more targets (e.g., pixels or proposals). Motivated by the

fact that each target undergoes a separate classification process, we propose the Dense

Adversary Generation (DAG) algorithm, which considers all the targets simultaneously

and optimizes the overall loss function. The implementation of DAG is simple, as it

only involves specifying an adversarial label for each target and performing iterative

10

Figure 2.1. An Adversarial example for semantic segmentation and object detection.
FCN [122] is used for segmentation, and Faster-RCNN [168] is used for detection. Top
row : the original image with the normal segmentation (the purple region is predicted as
dog) and detection results. Bottom row : after the adversarial perturbation (magnified
by 10) is added to the original image, both segmentation (the light green region as train
and the pink region as person) and detection results are completely wrong. Note that,
though the added perturbation can confuse both networks, it is visually imperceptible (the
maximal absolute intensity in each channel is less than 10).

gradient back-propagation. In practice, the algorithm often comes to an end after

a reasonable number of, say, 150 to 200, iterations. Figure 2.1 shows an adversarial

example which can confuse both deep segmentation and detection networks.

We point out that generating an adversarial example is much more challenging in

detection than in segmentation, as the number of targets is orders of magnitude larger

in the former case, e.g., for an image with K pixels, the number of possible proposals

is O(K2) while the number of pixels is only O(K), where O(·) is the big-O notation.

In addition, if only a subset of proposals are considered, the perturbed image may still

be correctly recognized after a new set of proposals are extracted (as DAG only aims

to fail the model’s recognition on the originally selected proposals). To increase the

robustness of DAG, we change the intersection-over-union (IOU) rate to preserve an

11

increased but still reasonable number of proposals as the attack targets. We empirically

verify that when enough proposals are considered in DAG, it is highly likely incorrect

recognition results can also be produced on the newly generated proposals of the

perturbed image. We also study the effectiveness and efficiency of the algorithm with

respect to the denseness of the considered proposals.

Following [196], we investigate the transferability of the generated perturbations.

Specifically, we use the adversarial perturbation computed on one network to attack

another network, and three situations are considered: (1) networks with the same

architecture but trained with different data; (2) networks with different architectures

but trained for the same task; and (3) networks for different tasks. Although the

difficulty increases as the difference goes more significant, the perturbations gener-

ated by DAG is able to transfer to some extent. Interestingly, adding two or more

heterogeneous perturbations significantly increases the transferability, which provides

an effective way of performing black-box adversarial attack [155] to networks with

unknown structures and/or properties.

The remainder of this chapter is organized as follows. Section 2.2 briefly introduces

prior work related to our research. Section 2.3 describes our algorithm for generating

adversarial perturbations, and Section 2.4 investigates the transferability of the

perturbations. Section 2.5 discusses the follow-up on attacking object detectors in the

physical world. Conclusions are drawn in Section 2.6.

2.2 Related Work

Deep networks for detection and segmentation. Deep networks are very suc-

cessful in object detection [39], [168] and semantic segmentation [24], [122] tasks.

Currently, one of the most popular object detection pipelines [39], [168] involves first

generating a number of proposals at different scales and positions, classifying each of

12

them, and performing post-processing such as non-maximal suppression (NMS). On

the other hand, the dominating segmentation pipeline [122] works by first predicting

a class-dependent score map at a reduced resolution, and performing up-sampling

to obtain high-resolution segmentation. Chen et al. [24] incorporates the “atrous”

algorithm and the conditional random field to further segmentation performance.

Adversarial attacks. Generating adversarial examples for image classification has

been extensively studied recently. Szegedy et al. [196] first showed adversarial examples,

computed by adding visually imperceptible perturbations to the original images, make

deep networks predict a wrong label with high confidence. Goodfellow et al. [64]

developed the fast gradient sign method to generate adversarial examples based on

the linear nature of deep networks. Moosavi-Dezfooli et al. [141] proposed a simple

algorithm to compute the minimal adversarial perturbation by assuming that the

loss function can be linearized around the current data point at each iteration. This

algorithm is later extended to find universal (image-agnostic) adversarial perturbations

[140]. Unlike adversarial examples which can be recognized by human, Nguyen et

al. [147] generated fooling images that are different from natural images and difficult

for human to recognize, but deep networks classify these images with high confidence.

There are two concurrent works [55], [73] that studied adversarial examples in

semantic segmentation on the Cityscapes dataset [34], where [55] showed the existence

of adversarial examples, and [73] showed the existence of universal perturbations. We

refer interested readers to their papers for details.

2.3 Generating Adversarial Examples

In this section, we introduce DAG algorithm. Given an image and the recognition

targets (proposals and/or pixels), DAG generates an adversarial perturbation which

is aimed to confuse as many targets as possible.

13

2.3.1 Dense Adversary Generation

Let X be an image which contains N recognition targets T = {t1, t2, . . . , tN}. Each

target tn, n = 1, 2, . . . , N , is assigned a ground-truth class label ln ∈ {1, 2, . . . , C},

where C is the number of classes, e.g., C = 21 (including the background class) in the

PascalVOC dataset [51]. Denote L = {l1, l2, . . . , ln}. The detailed form of T varies

among different tasks. In image classification, T only contains one element, i.e., the

entire image. Conversely, T is composed of all pixels (or the corresponding receptive

fields) in semantic segmentation, and all proposals in object detection. We will discuss

how to construct T in Section 2.3.2.

Given a deep network for a specific task, we use f(X, tn) ∈ RC to denote the

classification logits (i.e., the outputs before softmax) of the n-th recognition target in

the image X. To generate an adversarial example, the goal is to make the predictions

of all targets go wrong, i.e., ∀n, arg maxc {fc(X + r, tn)} ̸= ln. Here r denotes an

adversarial perturbation added to X. To this end, we specify an adversarial label l′
n

for each target, in which l′
n is randomly sampled from other incorrect classes, i.e.,

l′
n ∈ {1, 2, . . . , C} \ {ln}. Denote L′ = {l′

1, l′
2, . . . , l′

n}. In practice, we define a random

permutation function π : {1, 2, . . . , C} → {1, 2, . . . , C} for each image independently,

in which π(c) ̸= c for c = 1, 2, . . . , C, and generate L′ by setting l′
n = π(ln) for all n.

Under this setting, the loss function of all targets can be written as:

L(X, T ,L,L′) =
N∑︂

n=1

[︂
fln(X, tn)− fl′n(X, tn)

]︂
(2.1)

Minimizing L can be achieved via making every target to be incorrectly predicted, i.e.,

suppressing the confidence of the original correct class fln(X + r, tn), while increasing

that of the desired (adversarial) incorrect class fl′n(X + r, tn).

We apply the gradient descent algorithm for optimization. For the image at m-th

iteration (denoted as Xm), we first find its set of correctly predicted targets, named

the active target set: Tm = {tn | arg maxc {fc(Xm, tn)} = ln}, and then accumulate

14

Algorithm 1: Dense Adversary Generation (DAG)
Input : input image X;

the classifier f(·, ·) ∈ RC ;
the target set T = {t1, t2, . . . , tN};
the original label set L = {l1, l2, . . . , lN};
the adversarial label set L′ = {l′

1, l′
2, . . . , l′

N};
the maximal iterations M0;

Output : the adversarial perturbation r;
1 X0 ← X, r← 0, m← 0, T0 ← T ;
2 while m < M0 and Tm ̸= ∅ do
3 Tm = {tn | arg maxc {fc(Xm, tn)} = ln};
4 rm ←

∑︁
tn∈Tm

[︂
∇Xmfl′n(Xm, tn)−∇Xmfln(Xm, tn)

]︂
;

5 r′
m ← γ

∥rm∥∞
rm;

6 r← r + r′
m;

7 Xm+1 ← Xm + r′
m;

8 m← m + 1;
9 end

Return : r

the corresponding gradients with respect to the input image Xm as the following:

rm =
∑︂

tn∈Tm

[︂
∇Xmfl′n(Xm, tn)−∇Xmfln(Xm, tn)

]︂
(2.2)

Note that |Tm| ≪ |T | when m gets large, thus this strategy considerably reduces the

computational overhead. To avoid numerical instability, we normalize rm as

r′
m = γ

∥rm∥∞
· rm (2.3)

where γ = 0.5 is a fixed hyper-parameter. We then add r′
m to the current image Xm

and proceed to the next iteration. The algorithm terminates if either all the targets

are predicted as desired, i.e., Tm = ∅, or it reaches the maximum iteration number,

which is set to be 200 in segmentation and 150 in detection.

The final adversarial perturbation is computed as r = ∑︁
mr′

m. Note that, in practice,

we often obtain the input image X after subtracting the mean image ˆ︂X. In this case,

the adversarial image is Trunc
(︂
X + r + ˆ︂X)︂

, where Trunc(·) denotes the function that

truncates every pixel value within the range [0, 255]. Although truncation may harm

15

the adversarial perturbation, we empirically observed little effects, mainly because

the magnitude of the adversarial perturbation r is very small (see Section 2.3.5). The

overall pipeline of DAG algorithm is illustrated in Algorithm 1.

2.3.2 Selecting Input Proposals for Detection

A critical issue in DAG is to select a proper set T of targets. This is relatively easy in

the semantic segmentation task, because the goal is to produce incorrect predictions

on all pixels. In practice, we set each pixel as a separate target, i.e., performing

dense sampling on the image lattice, and the computational complexity of DAG is

proportional to the total number of pixels.

In the scenario of object detection, the selection of the target set T becomes a lot

more challenging, as the total number of possible targets (bounding box proposals) is

orders of magnitudes larger than that in semantic segmentation. A straightforward

choice is to only consider the proposals generated by a sideway network, e.g., the

regional proposal network (RPN) [168]. However, we find that when the adversarial

perturbation r is added back to the original image X, a different set of proposals will

be generated according to the new input X + r, and the network may still be able

to correctly classify these new proposals [124]. To overcome this problem, we make

the proposals very dense by increasing the threshold of NMS in RPN. In practice,

when IOU goes up from 0.70 to 0.90, the average number of proposals on each image

increases from ∼300 to ∼3000. Using this denser target set T , most probable object

bounding boxes are only pixels away from at least one of the selected input proposals,

and we can expect the classification error transfers among neighboring bounding boxes.

We empirically observe that this heuristics works very well, and the effect of adversarial

perturbations is positively correlated to the number of proposals considered in DAG.

Technically, given the proposals generated by RPN, we preserve all positive pro-

posals and discard the remaining. Here, a positive proposal satisfies the following two

16

conditions: 1) the IOU with the closest ground-truth object is greater than 0.1, and

2) the confidence score for the corresponding ground-truth class is greater than 0.1.

If both conditions hold on multiple ground-truth objects, we select the one with the

maximal IOU. The label of the proposal is defined as the corresponding confident

class. This strategy aims to select high-quality targets for Algorithm 1.

2.3.3 Quantitative Evaluation

Following [141], [196], we evaluate the effectiveness of DAG by measuring the gap

between the model performance on the original test images and the model performance

on the adversarially perturbed counterparts1.

• For semantic segmentation, we study two network architectures based on the

FCN [122] framework. One of them is based on the AlexNet [99] and the other

one is based on the 16-layer VGGNet [183]. Both networks have two variants.

We use FCN-Alex and FCN-VGG, which are publicly available, to denote the

networks that are trained on the original FCN training set which has 9610

images, and use FCN-Alex* and FCN-VGG* to denote the networks that are

trained on the DeepLab [24] training set which has 10582 images. We use the

validation set in [122] (736 images) as our semantic segmentation test set.

• For object detection, based on the Faster-RCNN [168] framework, we study two

network architectures, i.e., the ZFNet [237] and the 16-layer VGGNet. Both

networks have two variants, which are either trained on the PascalVOC-2007

trainval set, or the combined PascalVOC-2007 and PascalVOC-2012 trainval sets.

These four models are publicly available, and are denoted as FR-ZF-07, FR-ZF-

0712, FR-VGG-07 and FR-VGG-0712, respectively. We use the PascalVOC-2007

test set which has 4952 images as our object detection test set.
1For implementation simplicity, we keep targets with ground-truth class label background un-

changed when generating adversarial examples.

17

Network ORIG ADVR PERM
FCN-Alex 48.04 3.98 48.04

FCN-Alex* 48.92 3.98 48.91
FCN-VGG 65.49 4.09 65.47

FCN-VGG* 67.09 4.18 67.08
FR-ZF-07 58.70 3.61 58.33

FR-ZF-0712 61.07 1.95 60.94
FR-VGG-07 69.14 5.92 68.68

FR-VGG-0712 72.07 3.36 71.97

Table 2.1. Semantic segmentation (measured by mIOU, %) and object detection (mea-
sured by mAP, %) results of different networks. ORIG is the accuracy on the original
image set, ADVR is the accuracy on the adversarially perturbed image set, and PERM is
the accuracy on the image set with randomly permuted adversarial perturbations.

Results are summarized in Table 2.1. We can observe that the accuracy (mean

IOU (mIOU) for segmentation and mean average precision (mAP) for detection)

drops significantly after the adversarial perturbations are added, demonstrating the

effectiveness of DAG algorithm. Moreover, for detection, the networks with more

training data are often more sensitive to the adversarial perturbation. This is verified

by the fact that FR-ZF-07 (from 58.70% to 3.61%) has a smaller performance drop

than FR-ZF-0712 (from 61.07% to 1.95%), and that FR-VGG-07 (from 69.14% to

5.92%) has a smaller performance drop than FR-VGG-0712 (from 72.04% to 3.36%).

To verify the importance of the spatial structure of adversarial perturbations,

we evaluate the accuracy after randomly permuting the rows and/or columns of

r. In Table 2.1, we find that permuted adversarial perturbations cause negligible

accuracy drop, indicating that it is the spatial structure of r, instead of its magnitude,

contributes the most to the malicious effects of adversarial examples. For permutation

results, we randomly permute r for three times and report the average.

2.3.4 Fancy Adversarial/Fooling Images

In addition to simply confusing networks to output wrong predictions, DAG is also

able to control those wrong predictions in a very fine-grained manner. As shown in

18

Figure 2.2. Fancy examples generated by DAG for semantic segmentation. An adversarial
image is shown in the top and an fooling image is shown in the bottom. From leftmost to
rightmost: the original image, the perturbation (magnified by 10), the perturbed image,
and the segmentation results. The red, blue and black regions correspond to airplane, bus
and background, respectively.

Figure 2.2, DAG successfully generates one adversarial image (which humans can

recognize but deep networks are failed) with the network predictions of ICCV shape,

and one fooling image [147] (which is completely unrecognizable to humans but deep

networks produce false positives) with the network predictions of 2017 shape.

2.3.5 Diagnostics

Denseness of proposals. We first analyze the impact of proposal denseness on

DAG. To this end, we use different IOU rates in NMS, which directly affects the

number of proposals preserved in Algorithm 1. As we can see in Figure 2.3, the

mAP value goes down (i.e., stronger adversarial perturbations are generated) as the

IOU rate increases (i.e., fewer proposals are filtered out and thus the set of targets

T becomes larger). This phenomenon is in line of our expectation, since DAG only

guarantees misclassification on the targets in T . The denser sampling on proposals

allows the recognition error to propagate to other possible object positions better.

This observation motivates us empirically to choose a large IOU value (0.90) for

strengthening DAG.

19

0.6 0.65 0.7 0.75 0.8 0.85 0.9
nms ratio of proposal candidates

0

10

20

30

40

m
A

P
 %

FR-ZF-07
FR-ZF-0712

Figure 2.3. The mAP of using
adversarial perturbations on FR-
ZF-07 to attack FR-ZF-07 and
FR-ZF-0712, with respect to the
IOU rate. A larger IOU rate leads
to a denser set of proposals.

0 50 100 150 200
Number of iterations

0

1

2

3

4

N
um

be
r

of
 A

ct
iv

e
P

ix
el

s

104

FCN-VGG
FCN-Alex

0 50 100 150
Number of iterations

0

100

200

300

400

500

N
um

be
r

of
 A

ct
iv

e
B

ox
es

FR-ZF-07
FR-VGG-07

Figure 2.4. The convergence of DAG measured by
the number of active targets, i.e., |Tm|, with respect
to the number of iterations. Over the entire dataset,
the average number of iteration is 31.78 and 54.02 for
FCN-Alex and FCN-VGG respectively, and is 47.05 and
41.42 for FR-ZF-07 and FR-VGG-07 respectively.

Convergence. We then investigate the convergence of DAG, i.e., how many iterations

are needed to find the desired adversarial perturbation. Figure 2.4 shows the number

of active targets, i.e., |Tm|, with respect to the number of iterations m. In general,

the attacking process goes smoothly in the early rounds, in which we find that the

number of active proposals is significantly reduced. After the algorithm reaches the

maximal number of iterations, i.e., 200 in segmentation and 150 in detection, only few

(less than 1%) image fail to converge. Note that even on these “uncoverged” cases,

DAG is still able to produce reasonable adversarial perturbations.

Another interesting observation is the difficulty in generating adversarial examples.

In general, the detection networks are more difficult to attack than the segmentation

networks, which is arguably caused by the much larger number of potential targets

(recall that the total number of possible bounding boxes is one or two orders of

magnitudes larger). Meanwhile, as the IOU rate increases, i.e., a larger set T of

proposals is considered, convergence also becomes slower, implying that more iterations

are required to generate stronger adversarial perturbations.

Perceptibility. Following [141], [196], we compute the perceptibility of the adversarial

perturbation r defined by p =
(︂

1
K

∑︁
k ∥rk∥2

2

)︂1/2
, where K is the number of pixels, and

rk is the intensity vector (3-dimensional in the RGB color space, k = 1, 2, 3) normalized

20

dog:0.99

sofa:0.51

bird:0.96 dog:0.55

motorbike:1.00

person:0.41

person:0.84
dog:0.80

Original	Image Original	Result	
from	Network	2

Adversarial	Result	
from	Network	2

Adversarial	Result	
from	Network	1

Network	1:
FR-ZF-0712
Network	2:
FR-VGG-07

Network	1:
FCN-VGG
Network	2:
DL-VGG

Network	1:
FCN-VGG
Network	2:
FR-VGG-07

Network	1:
FR-VGG-07
Network	2:
FCN-VGG

vanishing/exploding gradient problems and to reduce the
training time. During the test time, iteration count was in-
creased to 10. The effect of this parameter value on the
accuracy is discussed in section 7.1.

Loss function During the training of the models that
achieved the best results reported in this paper, we used the
standard softmax loss function, that is, the log-likelihood
error function described in [30]. The standard metric used
in the Pascal VOC challenge is the average intersection over
union (IU), which we also use here to report the results. In
our experiments we found that high values of IU on the val-
idation set were associated to low values of the averaged
softmax loss, to a large extent. We also tried the robust log-
likelihood in [30] as a loss function for CRF-RNN training.
However, this did not result in increased accuracy nor faster
convergence.

Normalization techniques As described in Section 4,
we use the exponential function followed by pixel-wise nor-
malization across channels in several stages of the CRF-
RNN. Since this operation has a tendency to result in small
gradients with respect to the input when the input value is
large, we conducted several experiments where we replaced
this by a rectifier linear unit (ReLU) operation followed by
a normalization across the channels. Our hypothesis was
that this approach may approximate the original operation
adequately while speeding up the training due to improved
gradients. Furthermore, ReLU would induce sparsity on the
probability of labels assigned to pixels, implicitly pruning
low likelihood configurations, which could have a positive
effect. However, this approach did not lead to better re-
sults, obtaining 1% IU lower than the original setting per-
formance.

7. Experiments
We present experimental results with the proposed CRF-

RNN framework. We use these datasets: the Pascal VOC
2012 dataset, and the Pascal Context dataset. We use the
Pascal VOC 2012 dataset as it has become the golden stan-
dard to comprehensively evaluate any new semantic seg-
mentation approach in comparison to existing methods. We
also use the Pascal Context dataset to assess how well our
approach performs on a dataset with different characteris-
tics.

Pascal VOC Datasets

In order to evaluate our approach with existing methods un-
der the same circumstances, we conducted two main exper-
iments with the Pascal VOC 2012 dataset, followed by a
qualitative experiment.

In the first experiment, following [37, 38, 41], we used
a training set consisted of VOC 2012 training data (1464
images), and training and validation data of [23], which

B-ground Aero plane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dining-Table Dog Horse
Motorbike Person Potted-Plant Sheep Sofa Train TV/Monitor

Figure 4. Qualitative results on the validation set of Pascal
VOC 2012. FCN [37] is a CNN-based model that does not em-
ploy CRF. Deeplab [10] is a two-stage approach, where the CNN
is trained first, and then CRF is applied on top of the CNN output.
Our approach is an end-to-end trained system that integrates both
CNN and CRF-RNN in one deep network. Best viewed in colour.

amounts to a total of 11,685 images. After removing the
overlapping images between VOC 2012 validation data and
this training dataset, we were left with 346 images from the
original VOC 2012 validation set to validate our models on.
We call this set the reduced validation set in the sequel. An-
notations of the VOC 2012 test set, which consists of 1456
images, are not publicly available and hence the final results
on the test set were obtained by submitting the results to the
Pascal VOC challenge evaluation server [18]. Regardless
of the smaller number of images, we found that the relative
improvements of the accuracy on our validation set were in
good agreement with the test set.

As a first step we directly compared the potential advan-
tage of learning the model end-to-end with respect to alter-
native learning strategies. These are plain FCN-8s without
applying CRF, and with CRF as a postprocessing method
disconnected from the training of FCN, which is compara-
ble to the approach described in [10] and [41]. The results
are reported in Table 1 and show a clear advantage of the
end-to-end strategy over the offline application of CRF as a

7

Segmentation	
Legend

bird:0.77

Figure 2.5. Transferable adversarial examples for semantic segmentation and object
detection. These four rows, from top to bottom, show the transferability of adversarial
examples, from one detection network to another detection network, from one segmentation
network to another segmentation network, from one detection network to one segmentation
network, from one segmentation network to one detection network, respectively. The
segmentation legend are borrowed from [247].

in [0, 1]. We average the perceptibility value over the entire test set. In semantic

segmentation, these values are 2.6× 10−3, 2.5× 10−3, 2.9× 10−3 and 3.0× 10−3 on

FCN-Alex, FCN-Alex*, FCN-VGG and FCN-VGG*, respectively. In object detection,

these values are 2.4 × 10−3, 2.7 × 10−3, 1.5 × 10−3 and 1.7 × 10−3 on FR-ZF-07,

FR-ZF-0712, FR-VGG-07 and FR-VGG-0712, respectively. All these values are very

small, which quantitatively guarantees the imperceptibility of the generated adversarial

perturbations in DAG. Our visualized examples (Figures 2.1 and 2.2) also qualitatively

corroborates this point.

21

Adversarial
Perturbations from FR-ZF-07 FR-ZF-0712 FR-VGG-07 FR-VGG-

0712
R-FCN-
RN50

R-FCN-
RN101

None 58.70 61.07 69.14 72.07 76.40 78.06
FR-ZF-07 (r1) 3.61 22.15 66.01 69.47 74.01 75.87

FR-ZF-0712 (r2) 13.14 1.95 64.61 68.17 72.29 74.68
FR-VGG-07 (r3) 56.41 59.31 5.92 48.05 72.84 74.79

FR-VGG-0712 (r4) 56.09 58.58 31.84 3.36 70.55 72.78
r1 + r3 3.98 21.63 7.00 44.14 68.89 71.56

r1 + r3 (permute) 58.30 61.08 68.63 71.82 76.34 77.71
r2 + r4 13.15 2.13 28.92 4.28 63.93 67.25

r2 + r4 (permute) 58.51 61.09 68.68 71.78 76.23 77.71

Table 2.2. Transfer results for detection networks. FR-ZF-07, FR-ZF-0712, FR-VGG-07
and FR-VGG-0712 are used as four basic models to generate adversarial perturbations, and
R-FCN-RN50 and R-FCN-RN101 are used as black-box models. All models are evaluated
on the PascalVOC-2007 test set and its adversarial counterpart.

2.4 Transferring Adversarial Perturbations

We hereby investigate the transferability of the generated adversarial perturbations.

Specifically, we add the adversarial perturbation computed on one model to attack other

models. The attacked model may be trained based on a different (sometimes unknown)

network architecture, or even targeted at a different vision task. Quantitative results

are summarized in Tables 2.2 - 2.4, and typical examples are shown in Figure 2.5. In

the following parts, we analyze these results by organizing them into three categories,

i.e., cross-training transfer, cross-network transfer and cross-task transfer.

2.4.1 Cross-Training Transfer

By cross-training transfer, we mean to apply the perturbations learned from one

network to another network with the same architecture but trained on a different

dataset. We observe that the transferability largely exists within the same network

structure2. For example, using the adversarial perturbations generated by FR-ZF-07

to attack FR-ZF-0712 obtains a 22.15% mAP. This is a dramatic drop from the
2We also studied training on strictly non-overlapping datasets, e.g., the model FR-ZF-07 trained

on PascalVOC-2007 trainval set and the model FR-ZF-12val trained on PascalVOC-2012 val set.
The experiments deliver similar conclusions. For example, using FR-ZF-07 to attack FR-ZF-12val
results in a mAP drop from 56.03% to 25.40%, and using FR-ZF-12val to attack FR-ZF-07 results in
a mAP drop from 58.70% to 30.41%.

22

Adversarial
Perturbations from FCN-Alex FCN-Alex* FCN-VGG FCN-VGG* DL-VGG DL-RN101

None 48.04 48.92 65.49 67.09 70.72 76.11
FCN-Alex (r5) 3.98 7.94 64.82 66.54 70.18 75.45

FCN-Alex* (r6) 5.10 3.98 64.60 66.36 69.98 75.52
FCN-VGG (r7) 46.21 47.38 4.09 16.36 45.16 73.98

FCN-VGG* (r8) 46.10 47.21 12.72 4.18 46.33 73.76
r5 + r7 4.83 8.55 4.23 17.59 43.95 73.26

r5 + r7 (permute) 48.03 48.90 65.47 67.09 70.69 76.04
r6 + r8 5.52 4.23 13.89 4.98 44.18 73.01

r6 + r8 (permute) 48.03 48.90 65.47 67.05 70.69 76.05

Table 2.3. Transfer results for segmentation networks. FCN-Alex, FCN-Alex*, FCN-VGG
and FCN-VGG* are used as four basic models to generate adversarial perturbations, and
DL-VGG and DL-RN101 are used as black-box models. All models are evaluated on
validation set in [122] and its adversarial counterpart.

performance (61.07%) reported on the original images, although the drop is less than

that observed in attacking FR-ZF-07 itself (from 58.70% to 3.61%). Meanwhile, using

the adversarial perturbations generated by FR-ZF-0712 to attack FR-ZF-07 causes the

mAP drop from 58.70% to 13.14%, We observe similar phenomena when FR-VGG-07

and FR-VGG-0712, or FCN-Alex and FCN-Alex*, or FCN-VGG and FCN-VGG* are

used to attack each other. Detailed results are shown in Tables 2.2 and Table 2.3.

2.4.2 Cross-Network Transfer

We then study the transferability across different network structures. We additionally

consider two models, namely DeepLab [24] for semantic segmentation and R-FCN [39]

for object detection, for accessing the transferability on unknown networks. For

DeepLab, we use DL-VGG to denote the network based on 16-layer VGGNet [183],

and use DL-RN101 to denote the network based on 101-layer ResNet. Both networks

are trained on original DeepLab training set which has 10582 images. For R-FCN, we

use R-FCN-RN50 to denote the network based on 50-layer ResNet, and use R-FCN-

RN101 to denote the network based on 101-layer ResNet. Both networks are trained

on the combined trainval sets of PascalVOC-2007 and PascalVOC-2012. Note the

attacks applied to these four models are considered as in the black-box setting [155],

since DAG does not know the structure of these networks beforehand.

23

Adversarial
Perturbations from FR-ZF-07 FR-VGG-07 FCN-Alex FCN-VGG R-FCN-RN101

None 56.83 68.88 35.73 54.87 80.20
FR-ZF-07 (r1) 5.14 66.63 31.74 51.94 76.00

FR-VGG-07 (r3) 54.96 7.17 34.53 43.06 74.50
FCN-Alex (r5) 55.61 68.62 4.04 54.08 77.09
FCN-VGG (r7) 55.24 56.33 33.99 4.10 73.86

r1 + r3 + r5 5.02 8.75 4.32 37.90 69.07
r1 + r3 + r7 5.15 5.63 28.48 4.81 65.23
r1 + r5 + r7 5.14 47.52 4.37 5.20 68.51
r3 + r5 + r7 53.34 5.94 4.41 4.68 67.57

r1 + r3 + r5 + r7 5.05 5.89 4.51 5.09 64.52

Table 2.4. Transfer results between detection networks and segmentation networks.
FR-ZF-07, FR-VGG-07, FCN-Alex and FCN-VGG are used as four basic models to generate
adversarial perturbations, and R-FCN-RN101 is used as the black-box model. When
attacking the first four basic networks, we use a subset of the PascalVOC-2012 segmentation
validation set which contains 687 images. In the black-box attack, we evaluate our method
on the non-intersecting subset of 110 images.

Detailed results are shown in Tables 2.2 and Table 2.3. Experiments reveal that

transferability between different network structures is relatively weak. For example,

applying the adversarial examples generated by FR-ZF-07 leads to slight accuracy drop

on FR-VGG-07 (from 69.14% to 66.01%), FR-VGG-0712 (from 72.07% to 69.74%),

R-FCN-RN50 (from 76.40% to 74.01%) and R-FCN-RN101 (from 78.06% to 75.87%),

respectively. Similar phenomena is observed in using different segmentation models

to attack each other. The only exception is using FCN-VGG or FCN-VGG* to

attack DL-VGG (from 70.72% to 45.16% for FCN-VGG attack, and from 70.72%

to 46.33% by FCN-VGG* attack), which results in a significant accuracy drop of

DL-VGG. Considering the cues obtained from previous experiments, we conclude that

the transferability of adversarial examples is closely related to network architectures.

2.4.3 Cross-Task Transfer

Lastly, we investigate cross-task transfer, i.e., using the perturbations generated by a

detection network to attack a segmentation network or in the opposite direction. We

use a subset of PascalVOC-2012 segmentation validation set as our test set3. Results
3There are training images of FR-ZF-07, FR-VGG-07, FCN-Alex and FCN-VGG included in the

PascalVOC-2012 segmentation validation set, so we evaluate on the non-intersecting 687 images.

24

Figure 2.6. The adversarial example (computed by r1 + r3 + r5 + r7, see Table 2.4) that
simultaneously fools four different networks. The top row shows FR-VGG-07 and FR-ZF-07
detection results, and the bottom row shows FCN-Alex and FCN-VGG segmentation results.
The blue region in segmentation results corresponds to boat.

are summarized in Table 2.4. We note that if the same network structure is used,

e.g., using FCN-VGG (segmentation) and FR-VGG-07 (detection) to attack each

other, the accuracy drop is significant (the mIOU of FCN-VGG drops from 54.87% to

43.06%, and the mAP of FR-VGG-07 drops from 68.88% to 56.33%). Note that this

drop is even larger than the drop observed in cross-network transfer on the same task,

which again supports our hypothesis that the transferability of adversarial examples

is closely related to network architectures.

2.4.4 Combining Heterogeneous Perturbations

Based on the analysis above, we conjecture different network structures generate

roughly orthogonal perturbations, e.g., if rA is generated by one structure A, then

adding it to another structure B merely changes the results, fB(X, tn) ≈ fB(X + rA, tn).

This motivates us to combine heterogeneous perturbations to create more transferable

adversarial examples. For example, if both rA and rB are added, we will have

fA(X + rA + rB, tn) ≈ fA(X + rA, tn) and fB(X + rA + rB, tn) ≈ fB(X + rB, tn), which

mean the combined perturbation rA + rB can confuse both networks.

25

In Tables 2.2 - 2.4, we show the attack performance of such combined adversarial

perturbations. We observe that combining multiple adversarial perturbations sig-

nificantly boosts transferability. For example, the adversarial perturbation r2 + r4

(combining FR-ZF-0712 and FR-VGG-0712) causes significant mAP drop on all ZFNet-

based and VGGNet-based detection networks, and the adversarial perturbation r5 + r7

(combining FCN-Alex* and FCN-VGG*) causes significant mIOU drop on all AlexNet-

based and VGGNet-based segmentation networks. We also show such an example in

Figure 2.6, where four perturbations (i.e., r1 + r3 + r5 + r7, see Table 2.4) are added

together. Note that, the perceptibility value defined in Section 2.3.5 remains very

small for combined perturbation, e.g., it is 4.0× 10−3 in Figure 2.6.

Additionally, to verify that the spatial structure of combined adversarial perturba-

tions is the key for misleading deep networks, we randomly generate three permuted

versions of the combined adversarial perturbations and report the average accuracy.

As shown in Table 2.2 and Table 2.3, permutation destroys the spatial structure of the

adversarial perturbations, leading to negligible accuracy drops. The same conclusion

also holds when the perturbations from different tasks are combined.

2.4.5 Black-Box Attack

Combining heterogeneous perturbations allows us to perform better on the so-called

black-box setting [155], where we do not know the detailed properties (e.g., architecture,

purpose) of the targeted networks. Based on the analysis above, a simple and effective

solution is to compute the sum of adversarial perturbations from several of known

networks, such as FR-ZF-07, FR-VGG-07 and FCN-Alex, and use it to attack an

unknown network. This strategy even works well when the structure of the targeted

network is completely not investigated before. As an example shown in Table 2.4,

the perturbation r1 + r3 + r5 + r7 leads to significant accuracy drop (from 80.20% to

64.52%) on R-FCN-RN101, a powerful network based on the deep ResNet.

26

GHWHFWHG�DV�RWKHUV XQGHWHFWHGGHWHFWHG�DV�FDU GHWHFWHG�DV�RWKHUV XQGHWHFWHGGHWHFWHG�DV�FDU GHWHFWHG�DV�RWKHUV XQGHWHFWHGGHWHFWHG�DV�FDU GHWHFWHG�DV�RWKHUV XQGHWHFWHGGHWHFWHG�DV�FDU GHWHFWHG�DV�WDUJHW�ODEHOGHWHFWHG�DV�SHUVRQ

�D�

�E�

GHWHFWHG�DV�RWKHUV XQGHWHFWHGGHWHFWHG�DV�FDU GHWHFWHG�DV�WDUJHW�ODEHOGHWHFWHG�DV�SHUVRQ

�D�

�E�

GHWHFWHG�DV�WDUJHW�ODEHOGHWHFWHG�DV�SHUVRQ

�D�

�E�

Figure 2.7. Adversarial camouflage patterns for preventing cars/persons from being
correctly detected by deep networks in the physical world.

2.5 Universal Physical Camouflage Attacks

We further extend this work to attack object detectors in the real world. Though

prior works have revealed the adversarial vulnerability of object detectors under this

scenario [26], [52], [245], there are several limitations: (1) focusing on only attacking

a specific object (e.g. a stop sign [26], [53], commercial logo [185] or car [245]); (2)

generating perturbations only for rigid or planar objects (e.g., traffic sign, vehicle body,

board [198]), which can be less effective for complex objects (articulated non-rigid or

non-planar objects, e.g., human). (3) constructing meaningless which lack semantics

and appear unnatural for human observers (i.e., noisy or mosaic-like texture) [26],

[198], [245]; and (4) a unified evaluation environment is missing, which makes it

difficult to make fair comparisons between different attacks.

To address these issues, we present Universal Physical Camouflage Attack (UPC),

which constructs a universal camouflage pattern to hide objects from being detected

or to wrongly detect objects as the target label. Unlike former works which generate

instance-level perturbations, UPC constructs a universal pattern to attack all instances

that belong to the same category (e.g., person, cars) via jointly attacking the region

proposal network, the classifier and the regressor. To efficiently handle the deformations

of complex objects in the physical world, we propose to model their deformable

characteristics as well as external physical environments in UPC. We additionally

27

impose optimization constraint to make generated patterns look natural to human

observers. As shown in FIgure 2.7, these camouflage patterns are visually similar to

natural images and thus can be regarded as texture patterns on object surfaces such

as car paintings/human accessories. Moreover, to fairly evaluate the effectiveness of

different physical-world attacks, we present the first standardized virtual database,

AttackScenes, which simulates the real 3D world in a controllable and reproducible

environment. Our empirical results demonstrate the superiority of our proposed UPC

compared with existing physical adversarial attackers not only in virtual environments,

but also in real-world environments. We refer interested readers to [86] for details.

2.6 Summary

In this chapter, we investigate the problem of generating adversarial examples, and

extend it from image classification to semantic segmentation and object detection. We

propose DAG algorithm for this purpose. The basic idea is to first define a dense set

of targets as well as a different set of desired labels, and then optimize a loss function

in order to produce incorrect recognition results on all the targets simultaneously.

Extensive experimental results verify that DAG is able to fool deep networks in the

challenging recognition scenarios like object detection and semantic segmentation, and

the generated perturbation are visually imperceptible.

An intriguing property of the perturbation generated by DAG lies in the transfer-

ability. The perturbation can be transferred across different training sets, different

network architectures and even different tasks. Combining heterogeneous perturba-

tions often leads to more effective adversarial perturbations for black-box attacks.

The transferability also suggests that deep networks, though started with different

initialization and trained in different ways, share some basic principles such as local

linearity, which make them sensitive to a similar source of perturbations. This reveals

an interesting topic for future research.

28

Chapter 3

Improving Transferability of
Adversarial Examples with Input
Diversity

Though deep networks have achieved the state-of-the-art performance on various visual

tasks, they are vulnerable to adversarial examples, which are crafted by adding small

perturbations to clean images. However, most of the existing adversarial attacks only

achieve relatively low success rates under the challenging black-box setting, where the

attackers have no knowledge of the model structure and parameters. In this chapter,

we propose to improve the transferability of adversarial examples by creating diverse

input patterns. Instead of only using the original images to generate adversarial

examples, our method applies random transformations to the input images at each

iteration. Extensive experiments on ImageNet show that the proposed attack method

can generate adversarial examples that transfer much better to different networks than

existing baselines. By evaluating against top defense solutions and official baselines

from NIPS 2017 adversarial competition, our method achieves an average success rate

of 73.0%, which outperforms the top-1 attack submission in the NIPS competition by

a large margin of 6.6%. We hope that our proposed attack strategy can serve as a

strong benchmark baseline for evaluating the robustness of networks to adversaries

and the effectiveness of different defense methods in the future.

29

3.1 Introduction

Recent success of deep networks leads to great improvements on a wide range of

visual tasks, including image classification [72], [99], [183], object detection [60], [61],

[168], [246], and semantic segmentation [24], [122]. However, deep networks are also

sensitive to small perturbations to the input images, i.e., human-imperceptible additive

perturbations can result in failure predictions of deep networks. These intentionally

crafted images are known as adversarial examples [23], [29], [32], [35], [64], [196],

[214], [223], [227]. Learning how to generate adversarial examples can not only help

us investigate the robustness of different models [2], [191], but also shed lights on

understanding the insufficiency of current training algorithms [64], [100], [200].

Several methods [64], [100], [196] have been proposed recently to find adversarial

examples. In general, these attacks can be categorized into two types according to the

number of steps of gradient computation, i.e., single-step attacks [64] and iterative

attacks [100], [196]. On the one hand, iterative attacks can achieve higher success

rates than single-step attacks in the white-box setting, where the attackers have a

perfect knowledge of the network structure and weights. But on the other hand, if

these adversarial examples are tested on a different network (either in terms of network

structure, weights or both), i.e., the black-box setting, single-step attacks perform

better than iterative attacks. This trade-off is due to the fact that iterative attacks

tend to overfit the specific network parameters (i.e., have high white-box success rates)

and thus making generated adversarial examples rarely transfer to other networks

(i.e., have low black-box success rates), while single-step attacks usually underfit

to the network parameters (i.e., have low white-box success rates) thus producing

adversarial examples with slightly better transferability. Observing the phenomenon,

one interesting question is whether we can generate adversarial examples with high

success rates under both white-box and black-box settings.

30

Figure 3.1. The comparison of success rates using three different attacks. The ground-
truth “walking stick" is marked as pink in the top-5 confidence distribution plots. The
adversarial examples are crafted on Inception-v3 with the maximum perturbation ϵ = 15.
From the first row to the the third row, we plot the top-5 confidence distributions of
clean images, FGSM and I-FGSM, respectively. The fourth row shows the result of the
proposed Diverse Inputs Iterative Fast Gradient Sign Method (DI2-FGSM), which attacks
the white-box model and all black-box models successfully.

In this chapter, we propose to improve the transferability of adversarial examples

by creating diverse input patterns. Our work is inspired by the data augmentation

strategy [72], [99], [183], which has been proven effective to prevent networks from

overfitting by applying a set of label-preserving transformations (e.g., resizing, cropping

and rotating) to augment training images. Meanwhile, [69], [226] showed that image

transformations can defend against adversarial examples under certain situations,

which indicates adversarial examples (generated by existing methods) cannot generalize

well under different transformations. These transformed adversarial examples are

known as hard examples [180], [182] for attackers, which can then serve as good

samples to help attackers to generate more transferable adversarial examples.

31

We incorporate the proposed input diversity strategy with existing iterative at-

tacks, e.g., I-FGSM [100] and MI-FGSM [46]. At each iteration, unlike the traditional

methods which maximize the loss function directly w.r.t. the original inputs, we apply

random and differentiable transformations (e.g., random resizing, random padding)

to the input images with probability p and maximize the loss function w.r.t. these

transformed inputs. Note that these randomized operations were previously used

to defend against adversarial examples [226], while here we incorporate them into

the attack process to create hard and diverse input patterns. Figure 3.1 shows an

adversarial example generated by our method and compares the success rates to other

attack methods under both white-box and black-box settings.

We test the proposed input diversity on several networks under both white-box

and black-box settings, and single-model and multi-model settings. Compared with

traditional iterative attacks, the results on ImageNet (see Sec. 3.4.2) show that our

method gets significantly higher success rates for black-box models and maintains

similar success rates for white-box models. By evaluating against the top defense

solutions and official baselines from NIPS 2017 adversarial competition [102], our

method achieves an average success rate of 73.0%, which outperforms the top-1 attack

submission in NIPS competition by a large margin of 6.6%. We hope our method can

serve as a strong benchmark for evaluating the robustness of networks to adversaries

and the effectiveness of different defense methods in the future.

3.2 Related Work

Generating Adversarial Examples Traditional machine learning algorithms are

known to be vulnerable to adversarial examples [13], [41], [87]. Recently, Szegedy et

al. [196] pointed out that deep networks are also fragile to adversarial examples, and

proposed a box-constrained L-BFGS method to effectively find adversarial examples.

Due to the expensive computations in [196], Goodfellow et al. [64] then proposed the

32

fast gradient sign method to generate adversarial examples efficiently by performing a

single gradient step. This method was further extended by Kurakin et al. [100] to an

iterative version, and showed that the generated adversarial examples can exist in the

physical world. Dong et al. [46] proposed a broad class of momentum-based iterative

algorithms to boost the transferability of adversarial examples. The transferability can

also be improved by attacking an ensemble of networks simultaneously [120], smoothing

perturbation [248], exploiting intermediate feature maps [88], [91], [106], utilizing

skip connections [216], penalizing interactions during the attacking process [211],

and smoothing gradient [47], respectively. Recent works [8], [130], [146], [157], [158],

[162], [187], [222] also suggest to leverage generative models for creating transferable

adversarial examples. Besides transfer-based attacks, query-based [1], [12], [14], [25],

[27], [36], [67], [68], [109], [235] attacks are also very popular in the black-box attack

settings (if the feedback, e.g., prediction scores, is available from the targeted model).

Our proposed input diversity is also related to EOT [5]. These two works differ

in several aspects: (1) we mainly focus on the challenging black-box setting while

[5] focuses on the white-box setting; (2) our work aims at alleviating overfitting

in adversarial attacks, while [5] aims at making adversarial examples robust to

transformations, without any discussion of overfitting; and (3) we do not apply

expectation step in each attack iteration, while “expectation” is the core idea in [5].

Defending Against Adversarial Examples There are also many efforts on defend-

ing against adversarial attacks. [64], [100] proposed to inject adversarial examples into

the training data to increase the network robustness. Tramèr et al. [200] pointed out

that such adversarially trained models still remain vulnerable to adversarial examples,

and proposed ensemble adversarial training, which augments training data with per-

turbations transferred from other models, in order to improve the network robustness

further. [69], [124], [226] applied image transformations to inputs at inference time to

mitigate adversarial effects. Dhillon et al. [43] pruned a random subset of activation

33

according to their magnitude to enhance network robustness. Prakash et al. [159]

proposed a framework which combines pixel deflection with soft wavelet denoising to

defend against adversarial examples. [132], [174], [186] leveraged generative models

to purify adversarial images by moving them back towards the distribution of clean

images. Besides directly increase model robustness against adversarial examples, many

works [54], [62], [83], [93], [107], [126], [127], [134], [136], [234] suggested we can train

a classifier on detecting adversarial examples.

3.3 Approach

Let X denote an image and ytrue denote the corresponding ground-truth label, θ

denote the network parameters, and L(X, ytrue; θ) to denote the loss. To generate

the adversarial example, the goal is to maximize the loss L(X + r, ytrue; θ), under

the constraint that the generated adversarial example Xadv = X + r should look

visually similar to the original image X and the corresponding predicted label yadv ̸=

ytrue. In this chapter, we use l∞-norm to measure the perceptibility of adversarial

perturbations, i.e., ||r||∞ ≤ ϵ. The loss function is defined as

L(X, ytrue; θ) = −1ytrue · log (softmax(l(X; θ))) , (3.1)

where 1ytrue is the one-hot encoding of the ground-truth ytrue and l(X; θ) is the logits

output. Note that all the baseline attacks have been implemented in the cleverhans

library [154], which can be used directly for our experiments.

3.3.1 Family of Fast Gradient Sign Methods

In this section, we give an overview of the family of fast gradient sign methods.

Fast Gradient Sign Method (FGSM). FGSM [64] is the first member in this

attack family, which finds the adversarial perturbations in the direction of the loss

34

gradient ∇XL(X, ytrue; θ). The update equation is

Xadv = X + ϵ · sign(∇XL(X, ytrue; θ)). (3.2)

Iterative Fast Gradient Sign Method (I-FGSM). Kurakin et al. [100] extended

FGSM to an iterative version, which can be written as

Xadv
0 = X (3.3)

Xadv
n+1 = Clipϵ

X

{︂
Xadv

n + α · sign(∇XL(Xadv
n , ytrue; θ))

}︂
,

where Clipϵ
X indicates the resulting image are clipped within the ϵ-ball of the original

image X, n is the iteration number and α is the step size.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM). MI-FGSM [46]

integrates the momentum term into the attack process to stabilize update directions

and escape from poor local maxima. The updating procedure is similar to I-FGSM,

with the replacement of Eqn. (3.3) by:

gn+1 = µ · gn + ∇XL(Xadv
n , ytrue; θ)

||∇XL(Xadv
n , ytrue; θ)||1

Xadv
n+1 = Clipϵ

X

{︂
Xadv

n + α · sign(gn+1)
}︂

,

(3.4)

where µ is the decay factor of the momentum term and gn is the accumulated gradient

at iteration n.

3.3.2 Motivation

Let θ̂ denote the unknown network parameters. In general, a strong adversarial example

should have high success rates on both white-box models, i.e., L(Xadv, ytrue; θ) >

L(X, ytrue; θ), and black-box models, i.e., L(Xadv, ytrue; θ̂) > L(X, ytrue; θ̂). On the one

hand, the traditional single-step attacks, e.g., FGSM, tend to underfit to the specific

network parameters θ due to inaccurate linear appropriation of the loss L(X, ytrue; θ),

thus cannot reach high success rates on white-box models. On the other hand, the

35

traditional iterative attacks, e.g., I-FGSM, greedily perturb the images in the direction

of the sign of the loss gradient ∇XL(X, ytrue; θ) at each iteration, and thus easily

fall into the poor local maxima and overfit to the specific network parameters θ.

These overfitted adversarial examples rarely transfer to black-box models. In order

to generate adversarial examples with strong transferability, we need to find a better

way to optimize the loss L(X, ytrue; θ) to alleviate this overfitting phenomenon.

Data augmentation [72], [99], [183] is shown as an effective way to prevent networks

from overfitting during the training process. Meanwhile, [69], [226] showed that

adversarial examples are no longer malicious if simple image transformations are

applied, which indicates these transformed adversarial images can serve as good samples

for better optimization. Those facts inspire us to apply random and differentiable

transformations to the inputs for improving the transferability of adversarial examples.

3.3.3 Diverse Input Patterns

DI2-FGSM. We first present the Diverse Inputs Iterative Fast Gradient Sign Method

(DI2-FGSM), which applies image transformations T (·) to inputs with the probability

p at each iteration of I-FGSM [100] to alleviate the overfitting phenomenon.

Specifically, we consider random resizing, which resizes the input images to a

random size, and random padding, which pads zeros around the input images in a

random manner [226], as the instantiation of the image transformations T (·)1. The

transformation probability p controls the trade-off between success rates on white-box

models and success rates on black-box models, which can be observed from Figure 3.4.

If p = 0, DI2-FGSM degrades to I-FGSM with poor transferability. If p = 1, i.e., only

transformed inputs are used for the attack, the generated adversarial examples tend

to have much higher success rates on black-box models but lower success rates on

white-box models, since the original inputs are not seen by the attackers.
1We also experimented with other image transformations, e.g., rotation, to create diverse input

patterns, and found random resizing & padding yields the most transferable adversarial examples.

36

M-DI2-FGSMDI2-FGSM

MI-FGSMI-FGSMFGSM

p=0

μ=0

μ=0

N=1

p=0

Figure 3.2. Relationships between different attacks. By setting values of the transfor-
mation probability p, the decay factor µ and the total iteration number N , we can relate
these different attacks in the family of Fast Gradient Sign Methods.

In summary, the updating procedure of DI2-FGSM is similar to I-FGSM, but with

the replacement of Eqn. (3.3) by

Xadv
n+1 = Clipϵ

X{Xadv
n + α · sign

(︂
∇XL(T (Xadv

n ; p), ytrue; θ)
)︂
}, (3.5)

where the stochastic transformation function T (Xadv
n ; p) is

T (Xadv
n ; p) =

⎧⎨⎩T (Xadv
n) with probability p

Xadv
n with probability 1− p

. (3.6)

M-DI2-FGSM. We can combine momentum and diverse inputs together to form a

much stronger attack, i.e., Momentum Diverse Inputs Iterative Fast Gradient Sign

Method (M-DI2-FGSM). The overall updating procedure of M-DI2-FGSM is similar

to MI-FGSM, but with the only replacement of Eqn. (3.4) by

gn+1 = µ · gn + ∇XL(T (Xadv
n ; p), ytrue; θ)

||∇XL(T (Xadv
n ; p), ytrue; θ)||1

. (3.7)

3.3.4 Relationships between Different Attacks

The attacks mentioned above all belong to the family of Fast Gradient Sign Methods,

and are related via different parameter settings as shown in Figure 3.2. To summarize,

• If the transformation probability p = 0, M-DI2-FGSM degrades to MI-FGSM,

and DI2-FGSM degrades to I-FGSM.

• If the decay factor µ = 0, M-DI2-FGSM degrades to DI2-FGSM, and MI-FGSM

degrades to I-FGSM.

• If the total iteration number N = 1, I-FGSM degrades to FGSM.

37

3.3.5 Attacking an Ensemble of Networks

Liu et al. [120] suggested that attacking an ensemble of multiple networks simultane-

ously can generate much stronger adversarial examples. The motivation is that if an

adversarial image remains adversarial for multiple networks, then it is more likely to

transfer to other networks as well. Therefore, we can use this strategy to improve the

transferability even further.

We follow the ensemble strategy proposed in [46], which fuse the logit activations

together to attack multiple networks simultaneously. Specifically, to attack an ensemble

of K models, the logits are fused by:

l(X; θ1, ..., θK) =
K∑︂

k=1
wklk(X; θk) (3.8)

where lk(X; θk) is the logits output of the k-th model with the parameters θk, wk is

the ensemble weight with wk ≥ 0 and
K∑︁

k=1
wk = 1.

3.4 Experiments

3.4.1 Experiment Setup

Dataset. It is less meaningful to attack the images that are already classified wrongly.

Therefore, we randomly choose 5000 images from the ImageNet validation set that

are classified correctly by all the networks which we test on, to form our test dataset.

All these images are central cropped and resized to 299× 299× 3 beforehand.

Networks. We consider four normally trained networks, i.e., Inception-v3 (Inc-

v3) [195], Inception-v4 (Inc-v4) [193], Resnet-v2-152 (Res-152) [72] and Inception-

Resnet-v2 (IncRes-v2) [193], and three adversarially trained networks [200], i.e., ens3-

adv-Inception-v3 (Inc-v3ens3), ens4-adv-Inception-v3 (Inc-v3ens4) and ens-adv-Inception-

ResNet-v2 (IncRes-v2ens). All networks are publicly available2,3.
2https://github.com/tensorflow/models/tree/master/research/slim
3https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

38

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

FGSM 64.6% 23.5% 21.7% 21.7% 8.0% 7.5% 3.6%
I-FGSM 99.9% 14.8% 11.6% 8.9% 3.3% 2.9% 1.5%
DI2-FGSM (Ours) 99.9% 35.5% 27.8% 21.4% 5.5% 5.2% 2.8%
MI-FGSM 99.9% 36.6% 34.5% 27.5% 8.9% 8.4% 4.7%
M-DI2-FGSM (Ours) 99.9% 63.9% 59.4% 47.9% 14.3% 14.0% 7.0%

Inc-v4

FGSM 26.4% 49.6% 19.7% 20.4% 8.4% 7.7% 4.1%
I-FGSM 22.0% 99.9% 13.2% 10.9% 3.2% 3.0% 1.7%
DI2-FGSM (Ours) 43.3% 99.7% 28.9% 23.1% 5.9% 5.5% 3.2%
MI-FGSM 51.1% 99.9% 39.4% 33.7% 11.2% 10.7% 5.3%
M-DI2-FGSM (Ours) 72.4% 99.5% 62.2% 52.1% 17.6% 15.6% 8.8%

IncRes-v2

FGSM 24.3% 19.3% 39.6% 19.4% 8.5% 7.3% 4.8%
I-FGSM 22.2% 17.7% 97.9% 12.6% 4.6% 3.7% 2.5%
DI2-FGSM (Ours) 46.5% 40.5% 95.8% 28.6% 8.2% 6.6% 4.8%
MI-FGSM 53.5% 45.9% 98.4% 37.8% 15.3% 13.0% 8.8%
M-DI2-FGSM (Ours) 71.2% 67.4% 96.1% 57.4% 25.1% 20.7% 14.9%

Res-152

FGSM 34.4% 28.5% 27.1% 75.2% 12.4% 11.0% 6.0%
I-FGSM 20.8% 17.2% 14.9% 99.1% 5.4% 4.6% 2.8%
DI2-FGSM (Ours) 53.8% 49.0% 44.8% 99.2% 13.0% 11.1% 6.9%
MI-FGSM 50.1% 44.1% 42.2% 99.0% 18.2% 15.2% 9.0%
M-DI2-FGSM (Ours) 78.9% 76.5% 74.8% 99.2% 35.2% 29.4% 19.0%

Table 3.1. The success rates on seven networks where we attack a single network. The
diagonal blocks indicate white-box attacks, while the off-diagonal blocks indicate black-box
attacks which are much more challenging. Experiment results show our proposed input
diversity strategy substantially improves the transferability of adversarial examples.

Implementation details. For the parameters of different attackers, we follow the

default settings in [100] with the step size α = 1 and the total iteration number

N = min(ϵ + 4, 1.25ϵ). We set the maximum perturbation of each pixel to be ϵ = 15,

which is still imperceptible for human observers [124]. For the momentum term, decay

factor µ is set to be 1 as in [46]. For the stochastic transformation function T (X; p),

the probability p is set to be 0.5, i.e., attackers put equal attentions on the original

inputs and the transformed inputs. For transformation operations T (·), the input X

is first randomly resized to a rnd× rnd× 3 image, with rnd ∈ [299, 330), and then

padded to the size 330× 330× 3 in a random manner.

3.4.2 Attacking a Single Network

We first perform adversarial attacks on a single network. We craft adversarial examples

only on normally trained networks, and test them on all seven networks. The success

rates are shown in Table 3.1, where the diagonal blocks indicate white-box attacks and

39

cle
an

ad
ve
rs
ar
ia
l

Figure 3.3. Visualization of randomly selected clean images and their corresponding
adversarial examples. All these adversarial examples are generated on Inception-v3 using
our proposed DI2-FGSM with the maximum perturbation of each pixel ϵ = 15.

off-diagonal blocks indicate black-box attacks. We list the networks that we attack on

in rows, and networks that we test on in columns.

From Table 3.1, we can observe that M-DI2-FGSM outperforms all other baselines

by a large margin on all black-box models. Meanwhile, it also maintains high success

rates on all white-box models. For example, when generating adversarial examples

using IncRes-v2, M-DI2-FGSM has success rates of 67.4% on Inc-v4 (normally trained

black-box model) and 25.1% on Inc-v3ens3 (adversarially trained black-box model),

while strong baselines like MI-FGSM only obtains the corresponding success rates of

45.9% and 15.3%, respectively. These results demonstrate the effectiveness of utilizing

our proposed input diversity and momentum [46] simultaneously for improving the

transferability of adversarial examples.

We then compare the success rates of I-FGSM and DI2-FGSM to see the effective-

ness of diverse input patterns solely. We note that DI2-FGSM significantly improves

the success rates of I-FGSM on challenging black-box models (even this model is

adversarially trained), and maintains high success rates on white-box models. For

example, when generating adversarial examples using Res-152, DI2-FGSM has success

rates of 99.2% on Res-152 (white-box model), 53.8% on Inc-v3 (normally trained

40

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 C&W 100.0% 5.7% 5.3% 5.1% 3.0% 2.5% 1.1%
D-C&W (Ours) 100.0% 16.8% 13.0% 11.2% 5.8% 3.9% 2.1%

Inc-v4 C&W 15.1% 100.0% 9.2% 7.8% 4.4% 3.5% 1.9%
D-C&W (Ours) 29.3% 100.0% 20.1% 15.4% 7.1% 5.3% 3.1%

IncRes-v2 C&W 15.8% 11.2% 99.9% 8.6% 6.3% 3.6% 3.4%
D-C&W (Ours) 33.9% 25.6% 100.0% 19.4% 11.2% 7.3% 4.0%

Res-152 C&W 11.4% 6.9% 6.1% 100.0% 4.4% 4.1% 2.3%
D-C&W (Ours) 33.0% 27.7% 24.4% 100.0% 13.1% 9.3% 5.7%

Table 3.2. The success rates on seven networks where we attack a single network using
C&W attack. Experiment results demonstrate that the proposed input diversity strategy
can enhance C&W attack for generating more transferable adversarial examples.

black-box model) and 11.1% on Inc-v3ens4 (adversarially trained black-box model),

while I-FGSM only obtains the corresponding success rates of 99.1%, 20.8% and 4.6%,

respectively. Compared to FGSM, DI2-FGSM also reaches much higher success rates

on normally trained black-box models, and on-par performance on adversarially trained

black-box models. Besides, we visualize 5 randomly selected pairs of such generated

adversarial images and their clean counterparts in Figure 3.3. These visualizations

confirm the generated adversarial perturbations are human imperceptible.

It is worth to mention that the proposed input diversity is a general way for boosting

transferability of attackers. To verify this point, we incorporate C&W attack [20] with

input diversity. The experiment is conducted on 1000 correctly classified images. For

the parameters of C&W, the maximal iteration is 250, the learning rate is 0.01 and

the confidence is 10. As Table 3.2 suggests, our method, D-C&W, obtains a significant

performance improvement over C&W on black-box models.

3.4.3 Attacking an Ensemble of Networks

Though the results in Table 3.1 show that momentum and input diversity can signifi-

cantly improve the transferability of adversarial examples, they are still relatively weak

at attacking an adversarially trained network under the black-box setting, e.g., the

highest black-box success rate on IncRes-v2ens is only 19.0%. Therefore, we follow

the strategy in [120] to attack multiple networks simultaneously in order to further

41

Model Attack -Inc-v3 -Inc-v4 -IncRes-v2 -Res-152 -Inc-v3ens3 -Inc-v3ens4 -IncRes-v2ens

Ensemble

I-FGSM 96.6% 96.9% 98.7% 96.2% 97.0% 97.3% 94.3%
DI2-FGSM (Ours) 88.9% 89.6% 93.2% 87.7% 91.7% 91.7% 93.2%
MI-FGSM 96.9% 96.9% 98.8% 96.8% 96.8% 97.0% 94.6%
M-DI2-FGSM (Ours) 90.1% 91.1% 94.0% 89.3% 92.8% 92.7% 94.9%

Hold-out

I-FGSM 43.7% 36.4% 33.3% 25.4% 12.9% 15.1% 8.8%
DI2-FGSM (Ours) 69.9% 67.9% 64.1% 51.7% 36.3% 35.0% 30.4%
MI-FGSM 71.4% 65.9% 64.6% 55.6% 22.8% 26.1% 15.8%
M-DI2-FGSM (Ours) 80.7% 80.6% 80.7% 70.9% 44.6% 44.5% 39.4%

Table 3.3. The success rates of ensemble attacks. Adversarial examples are generated on
an ensemble of six networks, and tested on the ensembled network (white-box setting)
and the hold-out network (black-box setting). The sign “-” indicates the hold-out network.
We observe that the proposed M-DI2-FGSM significantly outperforms all other attacks on
all black-box models.

improve transferability. We consider all seven networks here. Adversarial examples

are generated on an ensemble of six networks, and tested on the ensembled network

and the hold-out network, using I-FGSM, DI2-FGSM, MI-FGSM and M-DI2-FGSM,

respectively. FGSM is ignored here due to its low success rates on white-box models.

All ensembled models are assigned with equal weight, i.e., wk = 1/6.

The results are summarized in Table 3.3, where the top row shows the success rates

on the ensembled network (white-box setting), and the bottom row shows the success

rates on the hold-out network (black-box setting). Under the challenging black-box

setting, we observe that M-DI2-FGSM always generates adversarial examples with

better transferability than other methods on all networks. For example, by keeping

Inc-v3ens3 as the hold-out model, M-DI2-FGSM can fool Inc-v3ens3 with an success rate

of 44.6%, while I-FGSM, DI2-FGSM and MI-FGSM only have success rates of 12.9%,

36.3% and 22.8%, respectively. Besides, compared with MI-FGSM, we observe that

using diverse input patterns alone, i.e., DI2-FGSM, can reach a much higher success

rate if the hold-out model is an adversarially trained network, and a comparable

success rate if the hold-out model is a normally trained network.

Under the white-box setting, we observe DI2-FGSM and M-DI2-FGSM reach slightly

lower (but still very high) success rates on ensemble models compared with I-FGSM

and MI-FGSM. This is due to the fact attacking multiple networks simultaneously

42

0 0.2 0.4 0.6 0.8 1

Probability

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Inc-v3
Inc-v4
IncRes-v2
Res-152
Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

-Inc-v3
-Inc-v4
-IncRes-v2
-Res-152
-Inc-v3-ens3
-Inc-v3-ens4
-IncRes-v2-ens

0 0.2 0.4 0.6 0.8 1

Probability

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Inc-v3
Inc-v4
IncRes-v2
Res-152
Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

-Inc-v3
-Inc-v4
-IncRes-v2
-Res-152
-Inc-v3-ens3
-Inc-v3-ens4
-IncRes-v2-ens

Figure 3.4. The success rates of DI2-FGSM (a) and M-DI2-FGSM (b) when varying the
transformation probability p. “Ensemble" (white-box setting) is with dashed lines and
“Hold-out" (black-box setting) is with solid lines.

is much harder than attacking a single model. However, the white-box success rates

can be improved if we assign the transformation probability p with a smaller value,

increase the number of total iteration N or use a smaller step size α (see Sec. 3.4.4).

3.4.4 Ablation Studies

In this section, we conduct a series of ablation experiments to study the impact of

different parameters. We only consider attacking an ensemble of networks here, since

it is much stronger than attacking a single network and can provide a more accurate

evaluation of the network robustness. The max perturbation of each pixel ϵ is set to

15 for all experiments.

Transformation probability p. We first study the effects of the transformation

probability p on the success rates under both white-box and black-box settings. We

set the step size α = 1 and the total iteration number N = min(ϵ + 4, 1.25ϵ). The

transformation probability p varies from 0 to 1. Recall the relationships shown in

Figure 3.2, M-DI2-FGSM (or DI2-FGSM) degrades to MI-FGSM (or I-FGSM) if p = 0.

43

15 19 23 27 31

Iteration Number

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Inc-v3
Inc-v4
IncRes-v2
Res-152
Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

-Inc-v3
-Inc-v4
-IncRes-v2
-Res-152
-Inc-v3-ens3
-Inc-v3-ens4
-IncRes-v2-ens

15 19 23 27 31

Iteration Number

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Inc-v3
Inc-v4
IncRes-v2
Res-152
Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

-Inc-v3
-Inc-v4
-IncRes-v2
-Res-152
-Inc-v3-ens3
-Inc-v3-ens4
-IncRes-v2-ens

Figure 3.5. The success rates of DI2-FGSM (a) and M-DI2-FGSM (b) when varying
the total iteration number N . “Ensemble" (white-box setting) is with dashed lines and
“Hold-out" (black-box setting) is with solid lines.

We show the success rates on different networks in Figure 3.4. We observe that

both DI2-FGSM and M-DI2-FGSM achieve a higher black-box success rates but lower

white-box success rates as p increase. Moreover, for all attacks, if p is small, i.e., only

a small amount of transformed inputs are utilized, black-box success rates can increase

significantly, while white-box success rates only drop a little. This phenomenon reveals

the importance of adding transformed inputs into the attack process.

Figure 3.4 also provide useful suggestions for constructing effective adversarial

attacks in practice. For example, if you know the black-box model is a new network

that totally different from any existing networks, you can set p = 1 to reach the

maximum transferability. If the black-box model is a mixture of new networks and

existing networks, then a moderate value of p can be selected to maximize the black-box

success rates while maintaining a reasonable white-box success rate (e.g., ≥ 90%).

Total iteration number N . We then ablate the effect of the total iteration number

N on the success rates under both white-box and black-box settings. Specifically, we

set the transformation probability p = 0.5, the step size α = 1, and vary the total

iteration number N from 15 to 31.

44

1/30 1/25 1/20 1/15 1/10 1/5

Step Size

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Inc-v3
Inc-v4
IncRes-v2
Res-152
Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

-Inc-v3
-Inc-v4
-IncRes-v2
-Res-152
-Inc-v3-ens3
-Inc-v3-ens4
-IncRes-v2-ens

1/30 1/25 1/20 1/15 1/10 1/5

Step Size

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Inc-v3
Inc-v4
IncRes-v2
Res-152
Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

-Inc-v3
-Inc-v4
-IncRes-v2
-Res-152
-Inc-v3-ens3
-Inc-v3-ens4
-IncRes-v2-ens

Figure 3.6. The success rates of DI2-FGSM (a) and M-DI2-FGSM (b) when varying the
step size α. “Ensemble" (white-box setting) is with dashed lines and “Hold-out" (black-box
setting) is with solid lines.

The results are showed in Figure 3.5. For DI2-FGSM, we observe that both

the black-box success rate and the white-box success rate get increased if a larger

total iteration number N is performed by attackers. This phenomenon can also be

observed for M-DI2-FGSM except for the black-box success rates on adversarially

trained models, i.e., performing more iterations cannot boost transferability further

on adversarially trained models. Moreover, we observe that the gap of success rates

between M-DI2-FGSM and DI2-FGSM becomes smaller as N increases.

Step size α. Lastly, we study the effects of the step size α on the success rates under

both white-box and black-box settings. We set the transformation probability p = 0.5.

In order to reach the maximum perturbation ϵ even for a small step size α, we set the

total iteration number be proportional to the step size, i.e., N = ϵ/α.

From Figure 3.6, we observe that the white-box success rates of both DI2-FGSM

and M-DI2-FGSM can be boosted if a smaller step size is provided. Under the black-

box setting, the success rates of DI2-FGSM is insensitive to the step size, while the

success rates of M-DI2-FGSM can still be improved with smaller step size.

45

Attack TsAIL iyswim Anil Thomas Inc-v3adv IncRes-v2ens Inc-v3 Average
I-FGSM 14.0% 35.6% 30.9% 98.2% 96.4% 99.0% 62.4%
DI2-FGSM (Ours) 22.7% 58.4% 48.0% 91.5% 90.7% 97.3% 68.1%
MI-FGSM 14.9% 45.7% 46.6% 97.3% 95.4% 98.7% 66.4%
MI-FGSM* 13.6% 43.2% 43.9% 94.4% 93.0% 97.3% 64.2%
M-DI2-FGSM (Ours) 20.0% 69.8% 64.4% 93.3% 92.4% 97.9% 73.0%

Table 3.4. The success rates on top defense solutions and official baselines
from NIPS 2017 adversarial competition [102]. Our proposed M-DI2-FGSM reaches
an average success rate of 73.0%, outperforming the best attack solution in the NIPS
competition by a large margin of 6.6%. * refers to the official results in the competition.

3.4.5 NIPS 2017 Adversarial Competition

In order to verify the effectiveness of our proposed attack methods in practice, we here

reproduce the top defense entries and official baselines from NIPS 2017 adversarial

competition [102] for testing transferability. Due to the resource limitation, we only

consider the top-3 defense entries, i.e., TsAIL [115], iyswim [226] and Anil Thomas4,

as well 3 official baselines, i.e., Inc-v3adv, IncRes-v2ens and Inc-v3. Specifically, we

note that the No.1 solution and the No.3 solution apply significantly different image

transformations (compared to random resizing & padding used in our attack method)

for defending against adversarial examples. For example, the No.1 solution, TsAIL,

applies an image denoising network for removing adversarial perturbations, and the

No.3 solution, Anil Thomas, includes a series of image transformations, e.g., JPEG

compression, rotation, shifting and zooming, in the defense pipeline. The test dataset

contains 5000 images which are all of the size 299× 299× 3, and their corresponding

labels are the same as the ImageNet labels.

Generating adversarial examples. When generating adversarial examples, we

follow the standard pipeline in [102]: (1) split the dataset equally into 50 batches;

(2) for each batch, the maximum perturbation ϵ is randomly chosen from the set

{ 4
255 , 8

255 , 12
255 , 16

255}; and (3) generate adversarial examples for each batch under the

corresponding ϵ constraint.
4https://github.com/anlthms/nips-2017/tree/master/mmd

46

https://github.com/anlthms/nips-2017/tree/master/mmd

Attacker settings. We follow [46] by attacking an ensemble of eight models, i.e.,

Inc-v3, Inc-v4, IncRes-v2, Res-152, Inc-v3ens3, Inc-v3ens4, IncRes-v2ens and Inc-v3adv.

The ensemble weights are set as 1/7.25 equally for the first seven models and 0.25/7.25

for Inc-v3adv. The total iteration number N is 10 and the decay factor µ is 1. Note

that such configured MI-FGSM won the 1-st place in the NIPS 2017 adversarial attack

competition [102]. For DI2-FGSM and M-DI2-FGSM, we choose p = 0.4 to balance

the tradeoff of success rates under the white-box setting and the black-box setting.

Results. The results are summarized in Table 3.4. We also list the official competition

results of MI-FGSM (i.e., MI-FGSM*) as a reference to validate our implementation.

The performance difference between MI-FGSM and MI-FGSM* is due to the random-

ness of the max perturbation magnitude introduced in the attack process. Compared

with MI-FGSM, DI2-FGSM has higher success rates on top defense solutions while

slightly lower success rates on baseline models, which results in these two attacks hav-

ing similar average success rates. By integrating both diverse inputs and momentum

term, this enhanced attack, M-DI2-FGSM, reports the best result, i.e., achieving an

average success rate of 73.0%. We note this result outperforms the the top-1 attack

submission, MI-FGSM, in the NIPS competition by a large margin (i.e., 73.0% vs.

66.4%). We believe this superior transferability can also be observed on other defense

submissions which we do not evaluate on.

3.4.6 Extensions

We additionally provide a brief discussion on two extensions of this work, which further

the transferability of adversarial examples.

Learning Transferable Adversarial Examples via Ghost Networks As shown

in Section 3.4.3 and Section 3.4.5, the ensemble-based attacks obtain much better

performance than the non-ensemble ones. Nonetheless, the ensemble-based attacks

47

suffer from expensive computational overhead, making it difficult to generate trans-

ferable adversarial examples efficiently, e.g., we usually need to train a large amount

of models from scratch for a good ensemble. To this end, we propose an alternative,

Ghost Networks, which generates a vast number of virtual models built on a base

network (a network trained from scratch), for highly efficient ensemble. Note that the

word “virtual" means these networks are not stored or trained (therefore we term them

as ghost networks). The ghost networks here are generated by imposing erosion on

certain intermediate structures of the base network on-the-fly. Meanwhile, we propose

Longitudinal Ensemble, to conduct an implicit ensemble of ghost networks during

the attack to further reduce computational complexity. Consequently, adversarial

examples can be easily generated without sacrificing computational efficiency. We

refer interested readers to [113] for details.

Regional Homogeneity: Towards Learning Transferable Universal Adver-

sarial Perturbations Against Defenses Also as shown in Section 3.4.5, current

attacks are generally hard to transfer to adversarially trained models. But interestingly,

by white-box attacking these adversarially trained models, we observe the generated

perturbations exhibit the property of regional homogeneity. This phenomenon suggests

constructing regionally homogeneous perturbation (RHP) could be an effective way to

create strong adversarial examples. To this end, we propose an effective transforming

paradigm and a customized gradient transformer module to transform existing pertur-

bations into regionally homogeneous ones. Without explicitly forcing the perturbations

to be universal, we observe that a well-trained gradient transformer module tends to

output input-independent gradients (hence universal) benefiting from the under-fitting

phenomenon. Extensive results demonstrate that our method substantially boosts the

transferability of adversarial examples across different models (especially to strong

defenses), and across different vision tasks (i.e., semantic segmentation and object

detection). We refer interested readers to [112] for details.

48

3.5 Summary

In this chapter, we propose to improve the transferability of adversarial examples

with input diversity. Specifically, our method applies random transformations to

the input images at each iteration in the attack process. Compared with traditional

iterative attacks, the results on ImageNet show our proposed attack method gets

significantly higher success rates for black-box models, and maintains similar success

rates for white-box models. We improve the transferability further by integrating

momentum term and attacking multiple networks simultaneously. By evaluating

against the top defense submissions and official baselines from NIPS 2017 adversarial

competition [102], we show that this enhanced attack reaches an average success rate

of 73.0%, which outperforms the best attack solution in NIPS competition by a large

margin of 6.6%. We hope our proposed attack strategy can serve as a benchmark for

evaluating the robustness of networks to adversaries and the effectiveness of different

defense methods in the future.

49

Part II

Towards Deep Networks
Robust to Adversarial Attacks

50

Chapter 4

Feature Denoising for Improving
Adversarial Robustness

Adversarial attacks to image classification systems present challenges to convolu-

tional networks and opportunities for understanding them. This study suggests

that adversarial perturbations on images lead to noise in the features constructed

by these networks. Motivated by this observation, we develop new network ar-

chitectures that increase adversarial robustness by performing feature denoising.

Specifically, our networks contain blocks that denoise the features using non-local

means or other filters; the entire networks are trained end-to-end. When combined

with adversarial training, our feature denoising networks substantially improve the

state-of-the-art in adversarial robustness in both white-box and black-box attack

settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art

has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration

PGD white-box attacks, our method secures 42.6% accuracy. Our method was ranked

first in Competition on Adversarial Attacks and Defenses (CAAD) 2018—it achieved

50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 un-

known attackers, surpassing the runner-up approach by ∼10%. Code is available at

https://github.com/facebookresearch/ImageNet-Adversarial-Training.

51

https://github.com/facebookresearch/ImageNet-Adversarial-Training

0

1

2

3

4

clean

adversarial
0

1

2

3

4

0

1

2

3

4

clean

adversarial
0

1

2

3

4

Figure 4.1. Feature map in the res3 block of an ImageNet-trained ResNet-50 applied on
a clean image (left) and on its adversarially perturbed counterpart (right). The adversarial
perturbation was produced using PGD [128] with maximum perturbation ϵ= 16 (out of
256). In this example, the adversarial image is incorrectly recognized as “space heater”;
the true label is “digital clock”.

4.1 Introduction

Adversarial attacks to image classification systems [196] add small perturbations

to images that lead these systems into making incorrect predictions. While the

perturbations are often imperceptible or perceived as small “noise” in the image,

these attacks are highly effective against even the most successful convolutional

network based systems [99], [103]. The success of adversarial attacks leads to security

threats in real-world applications of convolutional networks, but equally importantly,

it demonstrates that these networks perform computations that are dramatically

different from those in human brains.

Figure 4.1 shows a randomly selected feature map (e.g., the feature map in the

res3 block) of an ImageNet-trained ResNet-50 [72] applied on a clean image (shown

in the left panel) and on its adversarially perturbed counterpart (shown in the right

panel). The figure suggests that adversarial perturbations, while small in the pixel

space, lead to very substantial “noise” in the feature maps of the network. Whereas

the features for the clean image appear to focus primarily on semantically informative

content in the image, the feature maps for the adversarial image are activated across

semantically irrelevant regions as well. We provide more examples with the same

“noisy” pattern in Figure 4.2.

52

0

1

2

3

4

0

1

2

3

4

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

cl
ea

n
ad

ve
rs

ar
ia

l

Figure 4.2. More examples similar to Figure 4.1. We show feature maps corresponding
to clean images (top) and to their adversarial perturbed versions (bottom). The feature
maps for each pair of examples are from the same channel of a res3 block in the same
ResNet-50 trained on clean images. The attacker has a maximum perturbation ϵ = 16 in
the pixel domain.

Motivated by this observation, we explore feature denoising approaches to improve

the robustness of convolutional networks against adversarial attacks. We develop

new convolutional network architectures equipped with building blocks designed to

denoise feature maps. Our networks are trained end-to-end on adversarially generated

samples, allowing them to learn to reduce feature-map perturbations.

Empirically, we find the best performance is achieved by networks using non-local

means [16] for feature denoising, leading to models that are related to self-attention

[204] and non-local networks [210]. Our ablation studies show that using mean filters,

median filters, and bilateral filters [199] for feature denoising also improves adversarial

robustness, suggesting that feature denoising is a good design principle.

Our models outperform the state-of-the-art in adversarial robustness against highly

challenging white-box attacks on ImageNet [173]. Under 10-iteration PGD attacks [128],

we report 55.7% classification accuracy on ImageNet, largely surpassing the prior art’s

27.9% [96] with the same attack protocol. Even when faced with extremely challenging

2000-iteration PGD attacks that have not been explored in other literature, our model

achieves 42.6% accuracy. Our ablation experiments also demonstrate that feature

denoising consistently improves adversarial defense results in white-box settings.

53

Our networks are also highly effective under the black-box attack setting. The

network based on our method won the defense track in the recent Competition on

Adversarial Attacks and Defenses (CAAD) 2018, achieving 50.6% accuracy against 48

unknown attackers, under a strict “all-or-nothing" criterion. This is an 10% absolute

(20% relative) accuracy increase compared to the CAAD 2018 runner-up model. We

also conduct ablation experiments in which we defend against the five strongest

attackers from CAAD 2017 [102], demonstrating the potential of feature denoising.

4.2 Related Work

Adversarial training [64], [96], [128] defends against adversarial perturbations by

training networks on adversarial images that are generated on-the-fly during training.

Adversarial training constitutes the current state-of-the-art in adversarial robustness

against white-box attacks; we use it to train our networks. Adversarial logit paring

(ALP) [96] is a type of adversarial training that encourages the logit predictions of a

network for a clean image and its adversarial counterpart to be similar. ALP can be

interpreted as “denoising" the logit predictions for the adversarial image, using the

logits for the clean image as the “noise-free" reference.

Other approaches to increase adversarial robustness include pixel denoising. Liao

et al. [115] propose to use high-level features to guide the pixel denoiser; in contrast,

our denoising is applied directly on features. Guo et al. [69] transform the images

via non-differentiable image preprocessing, like image quilting [48], total variance

minimization [172], and quantization. While these defenses may be effective in black-

box settings, they can be circumvented in white-box settings because the attacker can

approximate the gradients of their non-differentiable computations [4]. In contrast

to [69], our feature denoising models are differentiable, but are still able to improve

adversarial robustness against very strong white-box attacks.

54

4.3 Feature Noise

Adversarial images are created by adding perturbations to images, constraining the

magnitude of perturbations to be small in terms of a certain norm (e.g., L∞ or L2).

The perturbations are assumed to be either imperceptible by humans, or perceived

as noise that does not impede human recognition of the visual content. Although

the perturbations are constrained to be small at the pixel level, no such constraints

are imposed at the feature level in convolutional networks. Indeed, the perturbation

of the features induced by an adversarial image gradually increases as the image is

propagated through the network [69], [115], and non-existing activations in the feature

maps are hallucinated. In other words, the transformations performed by the layers

in the network exacerbate the perturbation, and the hallucinated activations can

overwhelm the activations due to the true signal, which leads the network to make

wrong predictions.

We qualitatively demonstrate these characteristics of adversarial images by visual-

izing the feature maps they give rise to. Given a clean image and its adversarially

perturbed counterpart, we use the same network (here, a ResNet-50 [72]) to compute

its activations in the hidden layers. Figure 4.1 and 4.2 show typical examples of the

same feature map on clean and adversarial images, extracted from the middle of the

network (in particular, from a res3 block). These figures reveal that the feature maps

corresponding to adversarial images have activations in regions without relevant visual

content that resemble feature noise. Assuming that strong activations indicate the

presence of semantic information about the image content (as often hypothesized

[237]), the activations that are hallucinated by adversarial images reveal why the

model predictions are altered.

In this study, we attempt to address this problem by feature denoising. In Figure 4.3,

we visualize the feature maps of adversarial images, right before and right after a

55

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

0

0.6

1.2

1.8

2.4

Figure 4.3. Adversarial images and their feature maps before (left) and after (right) the
denoising operation (blue box in Figure 4.4). Here each pair of feature maps are from the
same channel of a res3 block in the same adversarially trained ResNet-50 equipped with
(Gaussian) non-local means denoising blocks. The attacker has a maximum perturbation
ϵ=16 for each pixel.

feature denoising operation (see the next section for details). The figure shows that

feature denoising operations can successfully suppress much of the noise in the feature

maps, and make the responses focus on visually meaningful content. In the next

sections, we present empirical evidence showing that models that perform feature

denoising operations, indeed, improve adversarial robustness.

Before we move on to describing our methods, we note although the feature

noise can be easily observed qualitatively, it is difficult to quantitatively measure this

noise. We found it is nontrivial to compare feature noise levels between different

models, in particular, when the network architecture and/or training methods change.

E.g., adding a denoising block in a network, end-to-end trained, tends to change the

magnitudes/distributions of all features. Nevertheless, we believe the observed noisy

appearance of features reflects a real phenomenon associated with adversarial images.

56

4.4 Denoising Feature Maps

Motivated by the empirical observations above, we propose to improve adversarial

robustness by adding denoising blocks at intermediate layers of convolutional networks.

The denoising blocks are trained jointly with all layers of the network in an end-to-end

manner using adversarial training. The end-to-end adversarial training allows the

resulting networks to (partly) eliminate feature map noise that is data-dependent,

i.e., noise that is generated by the attacker. It also naturally handles the noise

across multiple layers by considering how changes in earlier layers may impact the

feature/noise distributions of later layers.

Empirically, we find that the best-performed denoising blocks are inspired by self-

attention transformers [204] that are commonly used in machine translation and by

non-local networks [210] that are used for video classification. In this study, we focus

on the design of denoising blocks and study their denoising effects. Besides non-local

means, we also experiment with simpler denoising operations such as bilateral filtering,

mean filtering, and median filtering inside our convolutional networks.

4.4.1 Denoising Block

Figure 4.4 shows the generic form of our denoising block. The input to the block

can be any feature layer in the convolutional neural network. The denoising block

processes the input features by a denoising operation, such as non-local means or other

variants. The denoised representation is first processed by a 1×1 convolutional layer,

and then added to the block’s input via a residual connection [72].1

The design in Figure 4.4 is inspired by self-attention [204] and non-local blocks

[210]. However, only the non-local means [16] operation in the denoising block is

actually doing the denoising; the 1×1 convolutions and the residual connection are
1In our terminology, a “denoising operation” refers to the computation that only performs denoising

(blue box in Figure 4.4), and a “denoising block” refers to the entire block (all of Figure 4.4).

57

1×1 conv

denoising
operation

Figure 4.4. A generic denoising block. It wraps the denoising operation (e.g ., non-local
means or median filters) with a 1×1 convolution and an identity skip connection [72].

mainly for feature combination. While various operations can suppress noise, they

also impact signal. The usage of the residual connection can help the network to retain

signals, and the tradeoff between removing noise and retaining signal is adjusted by

the 1×1 convolution, which is learned end-to-end with the entire network. We will

present ablation studies showing both the residual connection and the 1×1 convolution

contribute to the effectiveness of the denoising block. The generic form of the denoising

block allows us to explore various denoising operations, as introduced next.

4.4.2 Denoising Operations

We experiment with four different instantiations of the denoising operation in our

denoising blocks.

Non-local means. Non-local means [16] compute a denoised feature map y of an

input feature map x by taking a weighted mean of features in all spatial locations L:

yi = 1
C(x)

∑︂
∀j∈L

f(xi, xj) · xj, (4.1)

where f(xi, xj) is a feature-dependent weighting function and C(x) is a normalization

function. We note that the weighted average in Eqn. (4.1) is over xj, rather than

another embedding of xj , unlike [204], [210]—denoising is directly on the input feature

x, and the correspondence between the feature channels in y and x is kept. Following

[210], we consider two forms:

58

• Gaussian (softmax) sets f(xi, xj)=e
1√
d

θ(xi)Tϕ(xj), where θ(x) and ϕ(x) are two

embedded versions of x (obtained by two 1×1 convolutions), d is the number of

channels, and C=∑︁
∀j∈L f(xi, xj). By noticing that f/C is the softmax function,

this version is shown in [210] to be equivalent to the softmax-based, self-attention

computation of [204].

• Dot product sets f(xi, xj) = xT
i xj and C(x) = N , where N is the number of

pixels in x. Unlike the Gaussian non-local means, the weights of the weighted

mean do not sum up to 1 in dot-product non-local means. However, qualitative

evaluations suggest it does suppress noise in the features. Experiments also

show this version improves adversarial robustness. Interestingly, we find that

it is unnecessary to embed x in the dot-product version of non-local means for

the model to work well. This is unlike the Gaussian non-local means, in which

embedding is essential. The dot-product version provides a denoising operation

with no extra parameters (blue box in Figure 4.5).

Figure 4.5, adapted from [210], shows the implementation of the denoising block based

on non-local means.

Bilateral filter. It is easy to turn the non-local means in Eqn. (4.1) into a “local

mean". Doing so leads to the classical bilateral filter [199] that is popular for edge-

preserving denoising. Formally, it is defined as:

yi = 1
C(x)

∑︂
∀j∈Ω(i)

f(xi, xj) · xj. (4.2)

This equation only differs from Eqn. (4.1) in the neighborhood, Ω(i), which is a local

region (e.g., a 3×3 patch) around pixel i. In Eqn. (4.2), we consider the Gaussian

and dot product implementations of the weights as before.

Mean filter. Perhaps the simplest form of denoising is the mean filter (average

pooling with a stride of 1). Mean filters reduce noise but also smooth structures, so

59

1×1 conv

H×W×256

HW×256 256×HW

HW×HW

HW×256

HW×256

H×W×256

H×W×256

x

(softmax)

Figure 4.5. A block with non-local means as its denoising operation. The blue part
illustrates the implementation of non-local means in Eqn. (4.1). The shapes of the feature
tensors are noted, with corresponding reshaping/transposing performed: here, H and W
are the height and width of the feature maps, and we use 256 channels as an example. If
softmax is used, it is the Gaussian version (with appropriate 1×1 convolution embeddings
used; omitted in this figure); if softmax is not used, it is the dot product version.

it is reasonable to expect them to perform worse than the above weighted means.

However, somewhat surprisingly, experiments show that denoising blocks using mean

filters as the denoising operation can still improve adversarial robustness.

Median filter. Lastly, we consider an interesting denoising filter that has rarely been

used in deep networks: median filtering. The median filter is defined as:

yi = median{∀j ∈ Ω(i) : xj}, (4.3)

where the median is over a local region, Ω(i), and is performed separately for each

channel. Median filters are known to be good at removing salt-and-pepper noise and

outliers of similar kind. Training convolutional networks that contain median filters is

an open problem, but we find experimentally that using median filters as a denoising

operation can also improve adversarial robustness.

In summary, our study explores a rich collection of denoising operations. Sec. 4.6

reports the results for all the denoising operations described above.

60

4.5 Adversarial Training

We show the effectiveness of feature denoising on top of very strong baselines. Our

strong experimental results are partly driven by a successful implementation of

adversarial training [64], [128]. In this section, we describe our implementation of

adversarial training, which is used for training both baseline models and our feature

denoising models.

The basic idea of adversarial training [64], [128] is to train networks on adversarially

perturbed images. The adversarially perturbed images can be generated by a given

white-box attacker based on the current parameters of the models. We use Projected

Gradient Descent (PGD)2 [128] as the white-box attacker for adversarial training.

PGD attacker. PGD is an iterative attacker. At each iteration, it performs a

gradient descent step in the loss function w.r.t. the image pixel values, based on an

adversarially selected output target. Next, it projects the resulting perturbed images

into the feasible solution space—within a maximum per-pixel perturbation of ϵ of the

clean image (that is, subject to an L∞ constraint). The hyper-parameters of the PGD

attacker during adversarial training are: the maximum perturbation for each pixel

ϵ=16, the attack step size α=1, and the number of attack iterations n=30. For this

PGD in adversarial training, we can initialize the adversarial image by the clean image,

or randomly within the allowed ϵ [128]. We randomly choose from both initializations

in the PGD attacker during adversarial training: 20% of training batches use clean

images to initialize PGD, and 80% use random points within the allowed ϵ.

Distributed training with adversarial images. For each mini-batch, we use PGD

to generate adversarial images for that mini-batch. Then we perform a one-step SGD

on these perturbed images and update the model weights. Our SGD update is based

exclusively on adversarial images; the mini-batch contains no clean images.
2Publicly available: https://github.com/MadryLab/cifar10_challenge

61

https://github.com/MadryLab/cifar10_challenge

Because a single SGD update is preceded by n-step PGD attack (with n=30) on

the model, the total amount of computation in adversarial training is ∼n× bigger

than standard (clean) training. To make adversarial training practical, we perform

distributed training using synchronized SGD on 128 GPUs. Each mini-batch contains

32 images per GPU (i.e., the total mini-batch size is 128×32=4096). We follow the

training recipe of [66]3 to train models with such large mini-batches. On ImageNet,

our models are trained for a total of 110 epochs; we decrease the learning rate by 10×

at the 35-th, 70-th, and 95-th epoch. A label smoothing [195] of 0.1 is used. The total

time needed for adversarial training on 128 Nvidia V100 GPUs is approximately 38

hours for the baseline ResNet-101 model, and approximately 52 hours for the baseline

ResNet-152 model.

4.6 Experiments

We evaluate feature denoising on the ImageNet classification dataset [173] that has

∼1.28 million images in 1000 classes. Following common protocols [4], [96] for adver-

sarial images on ImageNet, we consider targeted attacks when evaluating under the

white-box settings, where the targeted class is selected uniformly at random; targeted

attacks are also used in our adversarial training. We evaluate top-1 classification

accuracy on the 50k ImageNet validation images that are adversarially perturbed by

the attacker (regardless of its targets), also following [4], [96].

In this chapter, adversarial perturbation is considered under L∞ norm (i.e., maxi-

mum difference for each pixel), with an allowed maximum value of ϵ. The value of ϵ is

relative to the pixel intensity scale of 256.

Our baselines are ResNet-101 and ResNet-152 [72]. By default, we add 4 denoising

blocks to a ResNet: each is added after the last residual block of res2, res3, res4, and

res5, respectively.
3Implemented using the publicly available Tensorpack framework [218].

62

10 100 200 400 600 800 1000 1200 1400 1600 1800 2000
attack iterations

25

30

35

40

45

50

55

ac
cu

ra
cy

 (%
)

ALP

45.5
44.4

43.3 42.8 42.6
41.7

40.4
39.6 38.9 39.238.7

37.2
36.4 35.9 35.8

27.9

2000-iter PGD attack

ALP

45.5
44.4

43.3 42.8 42.6
41.7

40.4
39.6 38.9 39.238.7

37.2
36.4 35.9 35.8

27.9

2000-iter PGD attack

ALP, Inception-v3
ours, R-101 baseline
ours, R-152 baseline
ours, R-152 denoise

10 20 30 40 50 60 70 80 90 100
attack iterations

25

30

35

40

45

50

55

ac
cu

ra
cy

 (%
)

ALP

55.7

53.3

49.9
48.6 47.9

46.8 46.4 46.0 45.8 45.5

52.5

50.0

46.1
44.9

43.8
42.8 42.4 42.1 41.9 41.7

49.7

47.3

43.2
42.0

40.8
40.0 39.6 39.3 39.0 38.7

27.9

ALP, Inception-v3
ours, R-101 baseline
ours, R-152 baseline
ours, R-152 denoise

Figure 4.6. Defense against white-box attacks on ImageNet. The left plot shows
results against a white-box PGD attacker with 10 to 2000 attack iterations. The right
plot zooms in on the results with 10 to 100 attack iterations. The maximum perturbation
is ϵ = 16.

4.6.1 Against White-box Attacks

Following the evaluation protocol of ALP [96], we report defense results against PGD

as the white-box attacker.4 We evaluate with ϵ= 16 (out of 255), a challenging case

for defenders on ImageNet.

Following [128], the PGD white-box attacker initializes the adversarial perturbation

from a random point within the allowed ϵ cube. We set its step size α = 1, except

for 10-iteration attacks where α is set to ϵ/10=1.6. We consider a numbers of PGD

attack iterations ranging from 10 to 2000.

Main results. Figure 4.6 shows the main results. We first compare with ALP [96],

the previous state-of-the-art. ALP was evaluated under 10-iteration PGD attack in

[96], on Inception-v3 [195]. It achieves 27.9% accuracy on ImageNet validation images

(Figure 4.6, purple triangle).

ResNet-101 and ResNet-152 in Figure 4.6 are our baseline models (without any

denoising blocks) trained using our adversarial training implementation. Even with
4We have also evaluated other attackers, including FGSM [64], iterative FGSM [101], and its

momentum variant [46]. Similar to [96], we found that PGD is the strongest white-box attacker
among them.

63

the lower-capacity model of R-101, our baseline is very strong—it has 49.7% accuracy

under 10-iteration PGD attacks, considerably better than the ALP result. This

shows that our adversarial training system is solid; we note that the comparison

with ALP is on the system-level as they differ in other aspects (backbone networks,

implementations, etc.).

“R-152, denoise” in Figure 4.6 is our model of ResNet-152 with four denoising

blocks added. Here we show the best-performing version (non-local with Gaussian),

which we ablate next. There is a consistent performance improvement introduced by

the denoising blocks. Under the 10-iteration PGD attack, it improves the accuracy of

ResNet-152 baseline by 3.2% from 52.5% to 55.7% (Figure 4.6, right).

Our results are robust even under 2000-iteration PGD attacks. To our knowledge,

such a strong attack has not been previously explored on ImageNet. ALP [96] was only

evaluated against 10-iteration PGD attacks (Figure 4.6), and its claimed robustness

is subject to controversy [50]. Against 2000-iteration PGD attacks, our ResNet-152

baseline has 39.2% accuracy, and its denoising counterpart is 3.4% better, achieving

42.6%. We also observe that the attacker performance diminishes with 1000∼2000

attack iterations.

We note that in this white-box setting, the attackers can iteratively back-propagate

through the denoising blocks and create adversarial perturbations that are tailored to

the denoisers. Recent work [4] reports that pixel denoising methods can be circum-

vented by attackers in the white-box settings. By contrast, feature denoising leads

to consistent improvements in white-box settings, suggesting that feature denoising

blocks make it more difficult to fool networks.

Variants of denoising operations. Next, we evaluate variants of denoising opera-

tions in Sec. 4.4. In these ablations, we add blocks of different kinds to the baseline

ResNet-152.

64

10 20 30 40 50 60 70 80 90 100
attack iterations

42

44

46

48

50

52

54

56

ac
cu

ra
cy

 (%
)

55.7

45.5

53.5

43.4

52.5

41.7

55.7

45.5

53.5

43.4

52.5

41.7

ResNet-152 baseline
 +4 bottleneck (ResNet-164)
 +4 denoise: null (1x1 only)
 +4 denoise: 3x3 mean
 +4 denoise: 3x3 median
 +4 denoise: bilateral, dot prod
 +4 denoise: bilateral, gaussian
 +4 denoise: nonlocal, dot prod
 +4 denoise: nonlocal, gaussian

Figure 4.7. Ablation: denoising variants for defending against white-box attacks on
ImageNet. On the ResNet-152 baseline, all other models add 4 blocks to it. The attacker
is PGD under different attack iterations, with ϵ = 16. All denoising models are better
than the R-152 baseline and the “null" version.

We consider the following denoising operations: 3×3 mean filtering, 3×3 median

filtering, 3×3 bilateral filtering (Eqn. (4.2)), and non-local filtering. In our ablation

study, we further consider a “null” version of the denoising block: the block in

Figure 4.4 becomes trivially a residual block with a single 1×1 convolution. Further,

we also compare with adding 4 standard bottleneck [72] blocks—essentially, ResNet-164.

All models are trained by adversarial training. Figure 4.7 shows the white-box attacks

results; for simplicity, we show PGD attacker with up to 100 iterations in this ablation.

All of these denoising operations have better accuracy than: (i) ResNet-152 baseline,

(ii) adding 4 standard bottleneck blocks, and (iii) adding 4 “null” denoising blocks.

It is worth noticing that the 1×1 null version has the exact same number of extra

parameters as the mean filtering, median filtering, and bilateral/non-local filtering’s

dot product versions (which have no embedding). The null version is worse than all of

them (Figure 4.7). Also, while adding standard bottleneck blocks is helpful, adding

denoising blocks of any version is more accurate. These results suggest that the extra

parameters are not the main reason for our accuracy improvements; feature denoising

appears to be a general approach particularly useful for adversarial robustness.

65

attack iterations 10 100
non-local, Gaussian 55.7 45.5
removing 1×1 52.1 36.8
removing residual NaN NaN

Table 4.1. Ablation: denoising block design for defending against white-box attacks
on ImageNet. Our networks have four (Gaussian) non-local means denoising blocks. We
indicate the performance of models we were unable to train by “NaN”.

Our best-performing model is given by the non-local (Gaussian) version, which we

use by default in other parts of the chapter unless noted. Interestingly, this Gaussian

version is just marginally better than the dot product version.

Design decisions of the denoising block. The denoising block in Figure 4.4 has

a 1×1 layer and a residual connection. Although both components do not perform

denoising, they are important for the denoising blocks to work well. Next, we ablate

the behavior of the 1×1 and residual connection.

This ablation is in Table 4.1. We investigate ResNet-152 with four non-local,

Gaussian denoising blocks. All models are all trained by adversarial training. When

removing the 1×1 convolution in the denoising block, the accuracy drops considerably—

e.g., decreasing from 45.5% to 36.8% under 100-iteration PGD attacks. On the other

hand, removing the residual connection makes training unstable, and its loss does not

decrease in our adversarial training.

These results suggest that denoising features in itself is not sufficient. As sup-

pressing noise may also remove useful signals, it appears essential to properly combine

the denoised features with the input features in denoising blocks.

4.6.2 Against Black-Box Attacks

Next, we evaluate defending against black-box attacks. To have an unbiased yet

challenging set of attackers, we study the 5 best attackers of the NIPS 2017 CAAD

competition [102], for which code is publicly available. We use the latest CAAD 2018

66

model accuracy (%)
CAAD 2017 winner 0.04
CAAD 2017 winner, under 3 attackers 13.4
ours, R-152 baseline 43.1

+4 denoise: null (1×1 only) 44.1
+4 denoise: non-local, dot product 46.2
+4 denoise: non-local, Gaussian 46.4
+all denoise: non-local, Gaussian 49.5

Table 4.2. Defense against black-box attacks on ImageNet. We show top-1
classification accuracy on the ImageNet validation set. The attackers are the 5 best
attackers in CAAD 2017. We adopt the CAAD 2018 “all-or-nothing” criterion for defenders.
We note the 2017 winner has 0.04% accuracy under this strict criterion, and if we remove
the 2 attackers that it is most vulnerable to, it then has 13.4% accuracy under the 3
remaining attackers.

evaluation criterion, which we call “all-or-nothing”: an image is considered correctly

classified only if the model correctly classifies all adversarial versions of this image

created by all attackers. This is a challenging evaluation scenario for the defender.

Following the CAAD black-box setting, the maximum perturbation for each pixel

is ϵ = 32, which also makes defense more difficult. Note that all of our models are

trained with ϵ = 16.

Table 4.2 shows the results of defending against black-box attacks on ImageNet

validation images. To highlight the difficulty of the new “all-or-nothing" criterion, we

find that the CAAD 2017 winner [115] has only 0.04% accuracy under this criterion.

We find that it is mainly vulnerable to two of the five attackers5,6. If we remove these

two attackers, [115] has 13.4% accuracy in the “all-or-nothing" setting.

With the “all-or-nothing" criterion, our ResNet-152 baseline has 43.1% accuracy

against all five attackers. This number suggests that a successful implementation of

adversarial training is critical for adversarial robustness.

On top of our strong ResNet-152 baseline, adding four non-local denoising blocks

improves the accuracy to 46.4% (Table 4.2). Interestingly, both the Gaussian and dot
5https://github.com/pfnet-research/nips17-adversarial-attack
6https://github.com/toshi-k/kaggle-nips-2017-adversarial-attack

67

https://github.com/pfnet-research/nips17-adversarial-attack
https://github.com/toshi-k/kaggle-nips-2017-adversarial-attack

product versions perform similarly (46.4% vs. 46.2%), although the Gaussian version

has more parameters due to its embedding. Furthermore, the null version has 44.1%

accuracy—this is worse than the non-local, dot product version, even though they

have the same number of parameters; this null version of 1×1 is 1.0% better than the

ResNet-152 baseline.

We have also studied the local variants of denoising blocks, including mean, median,

and bilateral filters. They have 43.6% ∼ 44.4% accuracy in this black-box setting.

Their results are not convincingly better than the null version’s results. This suggests

that non-local denoising is more important than local denoising for robustness against

these black-box attackers.

Pushing the envelope. To examine the potential of our model, we add denoising

blocks to all residual blocks (one denoising block after each residual block) in ResNet-

152. We only study the non-local Gaussian version here. To make training feasible, we

use the sub-sampling trick in [210]: the feature map of xj in Eqn. (4.1) is subsampled

(by a 2×2 max pooling) when performing the non-local means, noting that the feature

map of xi is still full-sized. We only use sub-sampling in this case. It achieves a

number of 49.5%. This is 6.4% better than the ResNet-152 baseline’s 43.1%, under

the black-box setting (Table 4.2).

CAAD 2018 challenge results. Finally, we report the results from the latest

CAAD 2018 competition. The 2018 defense track adopts the “all-or-nothing” criterion

mentioned above—in this case, every defense entry needs to defend against 48 unknown

attackers submitted to the same challenge (in contrast to 5 attackers in our above

black-box ablation). The test data is a secret, ImageNet-like dataset. The maximum

perturbation for each pixel is ϵ = 32.

Figure 4.8 shows the accuracy of the 5 best entries in the CAAD 2018 defense

track. The winning entry, shown in the blue bar, was based on our method by using

68

0 10 20 30 40 50

1st

2nd

3rd

4th

5th

50.6

40.8

 8.6

 3.6

 0.6

Figure 4.8. CAAD 2018 results of the adversarial defense track. The first-place
entry is based on our method. We only show the 5 winning submissions here, out of more
than 20 submissions.

a ResNeXt-101-32×8 backbone [232] with non-local denoising blocks added to all

residual blocks. This entry only uses single-crop, single-model testing. It achieves

50.6% accuracy against 48 unknown attackers. This is ∼10% absolute (20% relative)

better than the second place’s 40.8% accuracy.

We also reported the white-box performance of this winning entry on ImageNet.

Under 10-iteration PGD attacks and 100-iteration PGD attacks, it achieves 56.0%

accuracy and 40.4% accuracy, respectively. These results are slightly worse than the

robustness of ResNet-152 based models reported in Section 4.6.1. We note that this

white-box robustness comparison is on the system-level as the winning entry was

trained with a slightly different parameter setting.

We emphasize the CAAD 2018 defense task is very challenging because of the “all-

or-nothing” criterion and many unknown (potentially new state-of-the-art) attackers.

Actually, except for the two leading teams, all others have <10% accuracy and many

of them have <1% accuracy. This highlights the significance of our 50.6% accuracy.

4.6.3 Denoising Blocks in Non-Adversarial Settings

Thus far we have been focusing on denoising blocks for improving adversarial defense.

Because our denoising blocks are components of the convolutional networks, these

networks can also be trained without adversarial training for the classification of

69

model accuracy (%)
R-152 baseline 78.91
R-152 baseline, run 2 +0.05
R-152 baseline, run 3 -0.04
+4 bottleneck (R-164) +0.13
+4 denoise: null (1×1 only) +0.15
+4 denoise: 3×3 mean filter +0.01
+4 denoise: 3×3 median filter -0.12
+4 denoise: bilateral, Gaussian +0.15
+4 denoise: non-local, Gaussian +0.17

Table 4.3. Accuracy on clean images in the ImageNet validation set when trained on
clean images. All numbers except the first row are reported as the accuracy difference
comparing with the first R-152 baseline result. For R-152, we run training 3 times
independently, to show the natural random variation of the same architecture. All denoising
models show no significant difference, and are within ±0.2% of the baseline R-152’s result.

“clean” images (i.e., the original ImageNet dataset task). We believe studying the

non-adversarial setting can help us better understand the behavior of denoising blocks.

Table 4.3 presents the clean image performance of models that were not adversarially

trained. We compare the baseline R-152, adding standard bottleneck blocks, adding

“null" (1×1) denoising blocks, and adding denoising blocks of various types. In the

clean setting, these denoising blocks have no obvious advantage over the baseline

R-152, adding standard bottleneck blocks, or adding “null" denoising blocks. Actually,

all results are in the range of about ±0.2% of the baseline R-152’s result—which have

no significant difference if we also consider the natural variance between separate

training runs of the same model (see baseline R-152 in Table 4.3).

We also find that adding non-local denoising blocks to the shallower ResNet-50 can

moderately improve accuracy by 0.7% in the non-adversarial setting, but doing so on

ResNet-152 has marginal gain. This, however, is not the case for adversarial images.

These results suggest that the denoising blocks could have special advantages in

settings that require adversarial robustness. This observation matches our intuition

that denoising blocks are designed to reduce feature noise, which only appears when

classifying adversarial images.

70

Finally, we report our ResNet-152 baseline with adversarial training has 62.32%

accuracy when tested on clean images, whereas its counterpart with “clean” training

has 78.91%. For the denoising version (non-local, Gaussian), the accuracy of an

adversarially trained network is 65.30% on clean images, whereas its cleanly trained

counterpart has 79.08%. This tradeoff between adversarial and clean training was

observed before (e.g., [201]); we expect this tradeoff to be the subject of future research.

4.7 Summary

Motivated by the noisy appearance of feature maps from adversarial images, we

have demonstrated the potential of feature denoising for improving the adversarial

robustness of convolutional networks. Interestingly, our study suggests that there

are certain architecture designs (viz., denoising blocks) that are particularly good

for adversarial robustness, even though they do not lead to accuracy improvements

compared to baseline models in “clean” training and testing scenarios. When combined

with adversarial training, these particular architecture designs may be more appropriate

for modeling the underlying distribution of adversarial images. We hope our work will

encourage researchers to start designing convolutional network architectures that have

“innate” adversarial robustness.

71

Chapter 5

Smooth Adversarial Training

It is commonly believed that networks cannot be both accurate and robust, that

gaining robustness means losing accuracy. It is also generally believed that, unless

making networks larger, network architectural elements would otherwise matter little in

improving adversarial robustness. Here we present evidence to challenge these common

beliefs by a careful study about adversarial training. Our key observation is that the

widely-used ReLU activation function significantly weakens adversarial training due to

its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which

we replace ReLU with its smooth approximations to strengthen adversarial training.

The purpose of smooth activation functions in SAT is to allow it to find harder

adversarial examples and compute better gradient updates during adversarial training.

Compared to standard adversarial training, SAT improves adversarial robustness for

“free”, i.e., no drop in accuracy and no increase in computational cost. For example,

without introducing additional computations, SAT significantly enhances ResNet-50’s

robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet.

SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2%

accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-

the-art defense by 9.5% for accuracy and 11.6% for robustness. Code is available at

https://github.com/cihangxie/SmoothAdversarialTraining.

72

https://github.com/cihangxie/SmoothAdversarialTraining

5.1 Introduction

Convolutional neural networks can be easily attacked by adversarial examples, which

are computed by adding small perturbations to clean inputs [196]. Many efforts

have been devoted to improving network resilience against adversarial attacks [69],

[119], [150], [156], [176], [226]. Among them, adversarial training [64], [100], [128],

which trains networks with adversarial examples on-the-fly, stands as one of the

most effective methods. Later works further improve adversarial training by feeding

networks with harder adversarial examples [212], maximizing the margin of networks

[44], optimizing a regularized surrogate loss [241], etc. While these methods achieve

stronger adversarial robustness, they sacrifice accuracy on clean inputs. It is generally

believed this trade-off between accuracy and robustness might be inevitable [201],

unless additional computational budgets are introduced to enlarge network capacities,

e.g., making wider or deeper networks [128], [229], adding denoising blocks [228].

Another popular direction for increasing robustness against adversarial attacks

is gradient masking [4], [155], which usually introduces non-differentiable operations

(e.g., discretization [17], [171]) to obfuscate gradients. With degenerated gradients,

attackers cannot successfully optimize the targeted loss and fail to break such defenses.

Nonetheless, gradient masking will be ineffective if its differentiable approximation is

used for generating adversarial examples [4].

The bitter history of gradient masking defenses motivates us to rethink the rela-

tionship between gradient quality and adversarial robustness, especially in the context

of adversarial training where gradients are applied more frequently than standard

training. In addition to computing gradients to update network parameters, adver-

sarial training also requires gradient computation for generating training samples.

Guided by this principle, we identify that ReLU, a widely-used activation function

in most network architectures, significantly weakens adversarial training due to its

73

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Forward

 ReLU
 Parametric Softplus

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Backward

 ReLU
 Parametric Softplus

Figure 5.1. The visualization of ReLU and Parametric Softplus. Left panel : the forward
pass for ReLU (blue curve) and Parametric Softplus (red curve). Right panel : the first
derivatives for ReLU (blue curve) and Parametric Softplus (red curve). Different from
ReLU, Parametric Softplus is smooth with continuous derivatives.

non-smooth nature, i.e., ReLU’s gradient gets an abrupt change when its input is

zero, as illustrated in Figure 5.1.

To fix the issue induced by ReLU, in this chapter, we propose smooth adversarial

training (SAT), which enforces architectural smoothness via replacing ReLU with its

smooth approximations1 for improving the gradient quality in adversarial training

(Figure 5.1 shows Parametric Softplus, an example of smooth approximations for

ReLU). With smooth activation functions, SAT is able to feed the networks with

harder adversarial training samples and compute better gradient updates for network

optimization, hence substantially strengthens adversarial training. Our experiment

results show that SAT improves adversarial robustness for “free”, i.e., without incurring

additional computations or degrading standard accuracy. For instance, by training

with the economical single-step PGD attacker (i.e., FGSM attacker with random

initialization)2 on ImageNet [173], SAT significantly improves ResNet-50’s robustness

by 9.3%, from 33.0% to 42.3%, while increasing the standard accuracy by 0.9% without

incurring additional computational cost.
1More precisely, when we say a function is smooth in this chapter, we mean this function is C1

smooth, i.e., its first derivative is continuous everywhere.
2In practice, we note the training time of the models with single-step PGD adversarial training is

only ∼1.5× than the training time of their standard training counterparts.

74

We also explore the limits of SAT with larger networks. We obtain the best

result by using EfficientNet-L1 [197], [231], which achieves 82.2% accuracy and 58.6%

robustness on ImageNet, significantly outperforming the prior art [161] by 9.5% for

accuracy and 11.6% for robustness.

5.2 Related Works

Adversarial training. Adversarial training improves robustness by training models

on adversarial examples [64], [100], [128], [196]. Existing works suggest that, to

further adversarial robustness, we need to either sacrifice accuracy on clean inputs

[44], [212], [213], [241], or incur additional computational cost [128], [228], [229]. This

phenomenon is referred to as no free lunch in adversarial robustness [145], [191], [201].

We hereby show that, with SAT, adversarial robustness can be improved for “free”—no

accuracy degradation on clean images and no additional computational cost incurred.

Our work is also related to the theoretical study [184], which shows replacing ReLU

with smooth alternatives can help networks get a tractable bound when certifying

distributional robustness. In this chapter, we empirically corroborate the benefits of

utilizing smooth activations is also observable in the practical adversarial training on

the real-world dataset using large networks.

Gradient masking. Besides training models on adversarial data, other ways for

improving adversarial robustness include defensive distillation [156], randomized

transformations [11], [19], [43], [119], [209], [221], [226], adversarial input purification

[11], [69], [115], [132], [151], [159], [174], [186], etc. Nonetheless, these defense methods

degenerate the gradient quality, therefore induce the gradient masking issue [155],

which gives a false sense of adversarial robustness [4]. In contrast to these works, we

aim to improve adversarial robustness by providing networks with better gradients,

but in the context of adversarial training.

75

5.3 ReLU Weakens Adversarial Training

We hereby perform a series of control experiments in the backward pass of gradient

computations to investigate how ReLU weakens, and how its smooth approximation

strengthens adversarial training.

5.3.1 Adversarial Training

Adversarial training [64], [128], [196], which trains networks with adversarial examples

on-the-fly, aims to optimize the following framework:

arg min
θ

E(x,y)∼D

[︃
max
ϵ∈S

L(θ, x + ϵ, y)
]︃
, (5.1)

where D is the underlying data distribution, L(·, ·, ·) is the loss function, θ is the

network parameter, x is a training sample with the ground-truth label y, ϵ is the added

adversarial perturbation, and S is the allowed perturbation range. As shown in Eqn.

(5.1), adversarial training consists of two computation steps: an inner maximization

step, which computes adversarial examples, and an outer minimization step, which

computes parameter updates.

Adversarial training setup. We choose ResNet-50 [72] as the backbone network.

We apply PGD attacker [128] to generate adversarial perturbations ϵ. Specifically, we

select the cheapest version of PGD, single-step PGD (PGD-1), to lower the training

cost. Following [177], [215], we set the maximum per-pixel change ϵ = 4 and the attack

step size β = 4. We follow the basic ResNet training recipes on ImageNet: models are

trained for a total of 100 epochs using momentum SGD optimizer, with the learning

rate decreased by 10× at the 30-th, 60-th and 90-th epoch; no regularization except a

weight decay of 1e-4 is applied.

When evaluating adversarial robustness, we measure the model’s top-1 accuracy

against the 200-step PGD attacker (PGD-200) on the ImageNet validation set, with

76

the maximum perturbation size ϵ = 4 and the step size β = 1. We note 200 attack

iteration is enough to let PGD attacker converge. Meanwhile, we report the model’s

top-1 accuracy on the original ImageNet validation set.

5.3.2 How Gradient Quality Affects Adversarial Training?

As shown in Figure 5.1, the widely used activation function, ReLU [71], [143], is

non-smooth. ReLU’s gradient takes an abrupt change, when its input is 0, therefore

significantly degrades the gradient quality. We conjecture that this non-smooth nature

hurts the training process, especially when we train models adversarially. This is

because, compared to standard training which only computes gradients for updating

network parameter θ, adversarial training requires additional computations for the

inner maximization step to craft the perturbation ϵ.

To fix this problem, we first introduce a smooth approximation of ReLU, named

Parametric Softplus [143], as follows,

f(α, x) = 1
α

log(1 + exp(αx)), (5.2)

where the hyperparameter α is used to control the curve shape. The derivative of this

function w.r.t. the input x is:

d

dx
f(α, x) = 1

1 + exp(−αx) (5.3)

To better approximate the curve of ReLU, we empirically set α = 10. As shown in

Figure 5.1, compared to ReLU, Parametric Softplus (α=10) is smooth because it has

a continuous derivative.

With Parametric Softplus, we next diagnose how gradient quality in the inner

maximization step and the outer minimization step affects the accuracy and robustness

of ResNet-50 in adversarial training. To clearly benchmark the effects, we only

substitute ReLU with Eqn. (5.3) in the backward pass, while leaving the

forward pass unchanged, i.e., ReLU is always used for model inference.

77

Improving Gradient Quality for Improving Gradient Quality for Accuracy (%) Robustness (%)the Adversarial Attacker the Network Parameter Updates

ResNet-50

✗ ✗ 68.8 33.0
✓ ✗ 68.3 (-0.5) 34.5 (+1.5)
✗ ✓ 69.4 (+0.6) 35.8 (+2.8)
✓ ✓ 68.9 (+0.1) 36.9 (+3.9)

Table 5.1. ReLU significantly weakens adversarial training. By improving gradient
quality for either the adversarial attacker or the network optimizer, resulted models obtains
better robustness than the ReLU baseline. The best robustness is achieved by adopting
better gradients for both the attacker and the network optimizer.

Improving gradient quality for the adversarial attacker. We first take a look

at the effects of gradient quality on computing adversarial examples (i.e., the inner

maximization step) during training. More precisely, in the inner step of adversarial

training, we use ReLU in the forward pass, but Parametric Softplus in the backward

pass; and in the outer step, we use ReLU in both the forward and the backward pass.

As shown in the second row of Table 5.1, when the attacker uses Parametric Soft-

plus’s gradient to generate training samples, the resulted model exhibits a performance

trade-off compared to the ReLU baseline, i.e., it improves adversarial robustness

by 1.5% but degrades accuracy by 0.5%. We note that this performance trade-off

can also observed if harder adversarial examples are applied to train networks [212],

therefore motivate us to hypothesize that better gradients for the inner maximization

step actually boosts the attacker’s strength during training. To verify this hypothesis,

we evaluate the robustness of two ResNet-50 models via PGD-1 (vs. PGD-200 in

Table 5.1), one with standard training and one with adversarial training. Specifically,

during the evaluation, the attacker uses ReLU in the forward pass, but Parametric

Softplus in the backward pass. With better gradients, we note that PGD-1 attacker is

strengthened and hurts models more: it can further decrease the top-1 accuracy by

4.0% (from 16.9% to 12.9%) on the model with standard training, and by 0.7% (from

48.7% to 48.0%) on the model with adversarial training (both results are not shown

in Table 5.1).

78

Improving gradient quality for network parameter updates. We then study

the role of gradient quality on updating network parameters (i.e., the outer minimiza-

tion step) during training. More precisely, in the inner step of adversarial training,

we always use ReLU; but in the outer step, we use ReLU in the forward pass, and

Parametric Softplus in the backward pass.

Surprisingly, this strategy improves adversarial robustness for “free”. As shown

in the third row of Table 5.1, without incurring additional computations, adversarial

robustness is boosted by 2.8%, and meanwhile accuracy is improved by 0.6%, compared

to the ReLU baseline. We note the corresponding training loss also gets lower: the

cross-entropy loss on the training set is reduced from 2.71 to 2.59. These results of

better robustness and accuracy, and lower training loss together suggest that, with

Parametric Softplus in the backward pass of the outer minimization step, networks

are able to compute better gradient updates in adversarial training. Interestingly, we

also observe that better gradient updates improve the standard training, i.e., with

ResNet-50, training with better gradients is able to improve accuracy from 76.8% to

77.0%, and reduces the corresponding training loss from 1.22 to 1.18. These results

on both adversarial training and standard training suggest that updating network

parameters using better gradients could serve as a principle for improving performance

in general, while keeping the inference process of the model unchanged (i.e., ReLU is

always used for inference).

Improving gradient quality for both the adversarial attacker and network

parameter updates. Given the observation that improving ReLU’s gradient for

either the adversarial attacker or the network optimizer benefits robustness, we further

enhance adversarial training by replacing ReLU with Parametric Softplus in all

backward passes, but keeping ReLU in all forward passes.

As expected, such a trained model reports the best robustness so far, i.e., as shown

in the last row of Table 5.1, it substantially outperforms the ReLU baseline by 3.9%

79

for robustness. Interestingly, this improvement still comes for “free”, i.e., it reports

0.1% higher accuracy than the ReLU baseline. We conjecture this is mainly due to the

positive effect on accuracy brought by computing better gradient updates (increase

accuracy) slightly overriding the negative effects on accuracy brought by creating

harder training samples (hurt accuracy) in this experiment.

5.3.3 Can Other Training Enhancements Remedy ReLU’s
Gradient Issue?

More attack iterations. It is known that increasing the number of attack iterations

can create harder adversarial examples [128]. We confirm in our own experiments

that by training with PGD attacker with more iterations, the resulted model exhibits

a similar behavior to the case where we apply better gradients for the attacker. By

increasing the attacker’s cost by 2×, PGD-2 improves the ReLU baseline by 0.6% for

robustness while losing 0.1% for accuracy. This result suggests we can remedy ReLU’s

gradient issue in the inner step of adversarial training if more computations are given.

Training longer. It is also known longer training lowers the training loss [81], which

we explore next. Interestingly, by extending the default setup to a 2× training cost

(i.e., 200 epochs), though the final model indeed achieves a lower training loss (from

2.71 to 2.62), there still exhibits a trade-off between accuracy and robustness. Longer

training gains 2.6% for accuracy but loses 1.8% for robustness. On the contrary, our

previous experiment shows applying better gradients to optimize networks improves

both robustness and accuracy. This discouraging result suggests training longer cannot

fix the issues in the outer step of adversarial training caused by ReLU’s poor gradient.

Conclusion. Given these results, we conclude that ReLU significantly weakens adver-

sarial training. Moreover, it seems that the degenerated performance cannot be simply

remedied even with training enhancements (i.e., increasing the number of attack

iterations & training longer). We identify that the key is ReLU’s poor gradient—by

80

replacing ReLU with its smooth approximation only in the backward pass substan-

tially improves robustness, even without sacrificing accuracy and incurring additional

computational cost. In the next section, we show that making activation functions

smooth is a good design principle for enhancing adversarial training in general.

5.4 Smooth Adversarial Training

As shown above, improving ReLU’s gradient can both strengthen the attacker and

provide better gradient updates. Nonetheless, this strategy may be suboptimal as

there still is a discrepancy between the forward pass (which we use ReLU) and the

backward pass (which we use Parametric Softplus). To fully exploit the potential of

training with better gradients, we hereby propose smooth adversarial training (SAT),

which enforces architectural smoothness via the exclusive usage of smooth activation

functions in adversarial training. We keep all other network components the same, as

most of them will not result in the issue of poor gradient.3

5.4.1 Adversarial Training with Smooth Activation Functions

We consider the following activation functions as the smooth approximations of ReLU

in SAT (Figure 5.2 plots these functions as well as their derivatives):

• Softplus [143]: Softplus(x) = log(1 + exp(x)). We also consider its parametric

version, i.e., 1
α

log(1 + exp(αx)), and set α = 10 as in Section 5.3.

• SILU [49], [75], [165]: SILU(x) = x · sigmoid(x). Compared to others, SILU

has a non-monotonic “bump” when x < 0.

• Gaussian Error Linear Unit (GELU) [75]: GELU(x) = x ·Φ(x), where Φ(x)

is the cumulative distribution function of the standard normal distribution.
3We ignore the gradient issue caused by max pooling, which is also non-smooth, in SAT. This is

because modern architectures rarely adopt it, e.g. only one max pooling layer is adopted in ResNet
[72], and none is adopted in EfficientNet [197].

81

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Backward
 Parametric SoftPlus
 SILU
 GELU
 ELU
 SmoothReLU

-1.0

-0.3

0.4

1.1

1.8

2.5

3.2

3.9

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Forward
 Parametric SoftPlus
 SILU
 GELU
 ELU
 SmoothReLU

Figure 5.2. Visualizations of smooth activation functions and their derivatives.

• Exponential Linear Unit (ELU) [33]: ELU(x, α) = x if x ≥ 0, otherwise

ELU(x, α) = α(exp(x) − 1). We set α = 1 as default. Note that when α ̸= 1,

the gradient of ELU is not continuously differentiable anymore. We will be

discussing the effects of these non-smooth variants of ELU (α ̸= 1) on adversarial

training in Section 5.4.3.

Main results. We follow the settings in Section 5.3 to adversarially train ResNet-50

equipped with smooth activation functions. The results are shown in Figure 5.3.

Compared to the ReLU baseline, all smooth activation functions substantially boost

robustness, while keeping the standard accuracy almost the same. For example,

smooth activation functions at least boost robustness by 5.7% (using Parametric

Softplus, from 33% to 38.7%). We believe such improvement is generalizable to other

smooth alternatives (e.g., [121], [138]). Our strongest robustness is reported by SILU,

which enables ResNet-50 to achieve 42.3% robustness and 69.7% standard accuracy.

Additionally, we compare to the setting in Section 5.3 where Parametric Softplus

is only applied at the backward pass. Interestingly, by additionally replacing ReLU

with Parametric Softplus at the forward pass, the resulted model further improves

robustness by 1.8% (from 36.9% to 38.7%) while keeping the accuracy almost the

same, demonstrating the importance of applying smooth activation functions in both

forward and backward passes in SAT.

82

33 34 35 36 37 38 39 40 41 42 43
Robustness (%)

68

69

70
Ac

cu
ra

cy
 (%

) GELU

Softplus

ELU

SILU

Parametric Softplus
ReLU

SmoothReLU

Figure 5.3. Smooth activation functions improve adversarial
training. Compared to ReLU, all smooth activation functions
significantly boost model robustness, while keeping the accuracy
on clean images almost the same.

α
Robustness (%)
ELU CELU

1 41.1
1.2 -0.3 +0.1
1.4 -2.0 -0.3
1.6 -3.7 -0.3
1.8 -6.2 -0.2
2.0 -7.9 -0.5

Table 5.2. Robust-
ness comparison be-
tween ELU (non-
smooth when α ̸=
1) and CELU (al-
ways smooth ∀α).

5.4.2 Ruling Out the Effect From x < 0

Compared to ReLU, in addition to being smooth, the functions above have non-zero

responses to negative inputs (x < 0) which may also affect adversarial training. To

rule out this factor, inspired by [178], we hereby propose SmoothReLU, which flattens

the activation function by only modifying ReLU after x ≥ 0,

SmoothReLU(x, α) =

⎧⎨⎩x− 1
α

log(αx + 1) if x ≥ 0,

0 otherwise,
(5.4)

where α is a learnable variable shared by all channels, and is constrained to be positive.

We note SmoothReLU is always continuously differentiable regardless the value of α,

d

dx
SmoothReLU(x, α) =

⎧⎨⎩
αx

1+αx
if x ≥ 0,

0 otherwise.
(5.5)

Note SmoothReLU converges to ReLU when α→∞. Additionally, in practice, the

learnable parameter α needs to be initialized at a large enough value (e.g., 400 in our

experiments) to avoid the gradient vanishing problem at the beginning of training.

We plot SmoothReLU and its first derivative in Figure 5.2.

We observe SmoothReLU substantially outperforms ReLU by 7.3% for robustness

(from 33.0% to 40.3%), and by 0.6% for accuracy (from 68.8% to 69.4%), therefore

clearly demonstrates the importance of a function to be smooth, and rules out the

effect from having responses when x < 0.

83

5.4.3 Case Study: Stabilizing Adversarial Training with ELU
using CELU

In the analysis above, we show that adversarial training can be greatly improved

by replacing ReLU with its smooth approximations. To further demonstrate the

generalization of SAT (beyond ReLU), we discuss another type of activation function—

ELU. The first derivative of ELU is shown below:

d

dx
ELU(x, α) =

⎧⎨⎩1 if x ≥ 0,

α exp(x) otherwise.
(5.6)

Here we mainly discuss the scenario when ELU is non-smooth, i.e., α ̸= 1. As can

be seen from Eqn. (5.6), ELU’s gradient is not continuously differentiable anymore,

i.e., α exp(x) ̸= 1 when x = 0, therefore resulting in an abrupt gradient change like

ReLU. Specifically, we consider the range 1.0 < α ≤ 2.0, where the gradient abruption

becomes more drastic with a larger value of α.

We show the adversarial training results in Table 5.2. Interestingly, we observe

that the adversarial robustness is highly dependent on the value of α—the strongest

robustness is achieved when the function is smooth (i.e., α = 1.0, 41.4% robustness),

and all other choices of α monotonically decrease the robustness when α gradually

approaches 2.0. For instance, with α = 2.0, the robustness drops to only 33.2%, which

is 7.9% lower than that of using α = 1.0. The observed phenomenon here is consistent

with our previous conclusion on ReLU—non-smooth activation functions significantly

weaken adversarial training.

To stabilize the adversarial training with ELU, we apply its smooth version, CELU

[9], which re-parametrize ELU to the following format:

CELU(x, α) =

⎧⎨⎩x if x ≥ 0,

α
(︂
exp

(︂
x
α

)︂
− 1

)︂
otherwise.

(5.7)

The first derivatives of CELU can be written as follows:

d

dx
CELU(x, α) =

⎧⎨⎩1 if x ≥ 0,

exp x
α

otherwise.
(5.8)

84

With this parameterization, CELU is now continuously differentiable regardless of the

choice of α.

We observe that CELU greatly stabilizes adversarial training, i.e., compared to

α = 1.0, the worst case in CELU is merely 0.5% lower (shown in Table 5.2). Recall

that this gap for ELU is 7.9%. This case study provides another strong support on

justifying the importance of performing SAT.

5.5 Exploring the Limits of Smooth Adversarial
Training

Recent works [57], [229] show that, compared to standard training, adversarial training

exhibits a much stronger requirement for larger networks to obtain better performance.

Nonetheless, previous explorations in this direction only consider either deeper networks

[229] or wider networks [128], which might be insufficient. To this end, we hereby

present a systematic study on showing how network scaling up behaves in SAT.

Specifically, we set SILU as the default activation function to perform SAT, as it

achieves the best robustness among different candidates (as shown in Figure 5.3).

5.5.1 Scaling-up ResNet

We first perform the network scaling-up experiments with ResNet in SAT. In standard

training, [197] suggest that, all three scaling-up factors, i.e., depth, width and image

resolutions, are important to further improve ResNet performance. We hereby examine

the effects of these factors in SAT. We choose ResNet-50 (with the default image

resolution at 224) as the baseline network.

Depth & width. Previous works already show that making networks deeper or

wider can further standard adversarial training. We re-verify this conclusion in SAT.

As shown in the second to fifth rows of Table 5.3, we confirm that both deeper or

85

Accuracy (%) Robustness (%)
ResNet-50 69.7 42.3
+ 2x deeper (ResNet-101) 72.9 (+3.2) 45.5 (+3.2)
+ 3x deeper (ResNet-152) 73.9 (+4.2) 46.0 (+3.7)
+ 2x wider (ResNeXt-50-32x4d) 71.2 (+1.5) 42.5 (+0.2)
+ 4x wider (ResNeXt-50-32x8d) 73.6 (+3.9) 45.1 (+2.8)
+ larger resolution 299 70.9 (+1.2) 43.8 (+1.5)
+ larger resolution 380 71.6 (+1.9) 44.1 (+1.8)
+ 3x deeper & 4x wider (ResNeXt-152-32x8d) & larger resolution 380 78.2 (+8.5) 51.2 (+8.9)

Table 5.3. Scaling-up ResNet in SAT. We observe SAT consistently helps larger networks
get better performance.

wider networks consistently outperform the baseline network in SAT. For instance,

by training a deeper ResNet-152, it improves ResNet-50’s performance by 4.2% for

accuracy and 3.7% for robustness. Similarly, by training a 4× wider ResNeXt-50-32x8d

[232], it improves accuracy by 3.9% and robustness by 2.8%.

Image resolution. Though larger image resolution benefits standard training, it is

generally believed that scaling up this factor will induce weaker adversarial robustness

[56]. However, surprisingly, this belief is invalid when taking adversarial training

into consideration. As shown in the sixth and seventh rows of Table 5.3, ResNet-50

consistently achieves better performance when training with larger image resolutions

in SAT. We conjecture this improvement is possibly due to a larger image resolution

(1) enables attackers to create stronger adversarial examples [56]; and (2) increases

network capacity [197], therefore benefits SAT overall.

Compound scaling. So far, we have confirmed that the basic scaling of depth, width

and image resolution are all important scaling-up factors in SAT. As argued in [197]

for standard training, scaling up all these factors simultaneously is better than just

focusing on a single dimension. To this end, we make an attempt to create a simple

compound scaling for ResNet. As shown in the last row of Table 5.3, the resulted

model, ResNeXt-152-32x8d with input resolution at 380, achieves a much stronger

result than the ResNet-50 baseline, i.e., +8.5% for accuracy and +8.9% for robustness.

86

Discussion on standard adversarial training. We first confirm that the basic

scaling of depth, width and image resolution also matter in standard adversarial

training, e.g., by scaling up ResNet-50 (33.0% robustness), the deeper ResNet-152

achieves 39.4% robustness (+6.4%), the wider ResNeXt-50-32x8d achieves 36.7%

robustness (+3.7%), and the ResNet-50 with larger image resolution at 380 achieves

36.9% robustness (+3.9%). Nonetheless, all these robustness performances are lower

than the robustness achieved by the SAT’s ResNet-50 (42.3%, first row of Table 5.3).

In other words, scaling up networks seems less effective than replacing ReLU with

smooth activation functions.

We also confirm that the compound scaling is much more effective than the

basic scaling for standard adversarial training, e.g., ResNeXt-152-32x8d with input

resolution at 380 here reports 46.3% robustness. Although this result is better than

adversarial training with the basic scaling above, it is still ∼5% lower than SAT

with compound scaling, i.e., 46.3% v.s. 51.2%. In other words, even with larger

networks, applying smooth activation functions in adversarial training is still essential

for improving performance.

5.5.2 SAT with EfficientNet

The results on ResNet show that scaling up networks in SAT effectively improves

performance. Nonetheless, the applied scaling policies could be suboptimal, as they

are hand-designed without any optimizations. EfficientNet [197], which uses neural

architecture search [250] to automatically discover the optimal factors for network

scaling, provides a strong family of models for image recognition. To examine the

benefits of EfficientNet, we now use it to replace ResNet in SAT. Note that all other

training settings are the same as described in our ResNet experiments.

Similar to ResNet, Figure 5.4 shows stronger backbones consistently achieve better

performance in SAT. For instance, by scaling the network from EfficientNet-B0 to

87

Figure 5.4. Scaling-up EfficientNet in SAT. We can observe that both robustness
and accuracy get substantially improved if a larger EfficientNet is applied in SAT. Note
EfficientNet-L1 is not connected to the rest of the graph because it was not part of the
compound scaling suggested by [197].

EfficientNet-B7, the robustness is improved from 37.6% to 57.0%, and the accuracy

is improved from 65.1% to 79.8%. Surprisingly, the improvement is still observable

for larger networks: EfficientNet-L1 [231] further improves robustness by 1.0% and

accuracy by 0.7% over EfficientNet-B7.

Training enhancements on EfficientNet. So far all of our experiments follow the

training recipes from ResNet, which may not be optimal for EfficientNet training.

To this end, we import the following settings to our experiments as in original

EfficientNet training setups [197]: we change weight decay from 1e-4 to 1e-5, and

add Dropout [188], stochastic depth [85] and AutoAugment [37] to regularize the

training process. Besides, we train models longer (i.e., 200 epochs) to better cope with

these training enhancements, and adopt the early stopping strategy to prevent the

catastrophic overfitting issue in robustness [215]. With these training enhancements,

our EfficientNet-L1 gets further improved, i.e., +1.7% for accuracy (from 80.5% to

82.2%) and +0.6% for robustness (from 58.0% to 58.6%).

88

Accuracy (%) Robustness (%)
Prior art [161] 72.7 47.0
EfficientNet+SAT 82.2 (+9.5) 58.6 (+11.6)

Table 5.4. Comparison to the previous state-of-the-art.

Comparing to the prior art [161]. Table 5.4 compares our best results with the

prior art. With SAT, we are able to train a model with strong performance on

both adversarial robustness and standard accuracy—our best model (EfficientNet-

L1 + SAT) achieves 82.2% standard accuracy and 58.6% robustness, which largely

outperforms the previous state-of-the-art method [161] by 9.5% on standard accuracy

and 11.6% on adversarial robustness.

Discussion. Finally, we emphasize a large reduction in the accuracy gap between

adversarially trained models and standard trained models for large networks. For

example, with the training setup above (with enhancements), EfficientNet-L1 achieves

84.1% accuracy in standard training, and this accuracy slightly decreases to 82.2%

(-1.9%) in SAT. Note that this gap is substantially smaller than the gap in ResNet-50

of 7.1% (76.8% in standard training v.s. 69.7% in SAT). Moreover, it is also worth

mentioning that the high accuracy of 82.2% provides strong support to [90] on arguing

robust features indeed can generalize well to clean inputs.

5.6 Summary

In this chapter, we propose smooth adversarial training, which enforces architec-

tural smoothness via replacing non-smooth activation functions with their smooth

approximations in adversarial training. SAT improves adversarial robustness without

sacrificing standard accuracy or incurring additional computation cost. Extensive

experiments demonstrate the general effectiveness of SAT. With EfficientNet-L1,

SAT reports the state-of-the-art adversarial robustness on ImageNet, which largely

outperforms the prior art [161] by 9.5% for accuracy and 11.6% for robustness.

89

Chapter 6

Intriguing Properties of
Adversarial Training at Scale

Adversarial training is one of the main defenses against adversarial attacks. In this

chapter, we provide the first rigorous study on diagnosing elements of large-scale

adversarial training on ImageNet, which reveals two intriguing properties.

First, we study the role of normalization. Batch Normalization (BN) is a crucial

element to help deep networks achieve state-of-the-art performance on a wide range of

visual benchmarks, but we show it may prevent networks from obtaining strong robust-

ness in adversarial training. One unexpected observation is that, for models trained

with BN, simply removing clean images from training data can largely boost adversar-

ial robustness, e.g., from 20.9% to 39.2% (+18.3%). We relate this phenomenon to

the hypothesis that clean images and adversarial images are drawn from two different

domains. This two-domain hypothesis may explain the issue of BN when training

with a mixture of clean and adversarial images, as estimating normalization statistics

of this mixture distribution is challenging. Guided by this two-domain hypothesis, we

show disentangling the mixture distribution for normalization, i.e., applying separate

BNs to clean and adversarial images for statistics estimation, achieves much stronger

robustness. Additionally, we find that enforcing BNs to behave consistently at training

and testing can further enhance robustness.

90

Second, we study the role of network capacity. We find our so-called “deep”

networks are still shallow for the task of adversarial learning. Unlike traditional

classification tasks where accuracy is only marginally improved by adding more layers

to “deep” networks (e.g., ResNet-152), adversarial training exhibits a much stronger

demand on deeper networks to achieve higher adversarial robustness. This robustness

improvement can be observed substantially and consistently even by pushing the

network capacity to an unprecedented scale, i.e., ResNet-638.

6.1 Introduction

Adversarial attacks [196] can mislead neural networks to make wrong predictions by

adding human imperceptible perturbations to input data. Adversarial training [64] is

shown to be an effective method to defend against such attacks, which trains neural

networks on adversarial images that are generated on-the-fly during training. Later

works further improve robustness of adversarially trained models by imposing logits

pairing [96], denoising at feature space [228], etc. However, these works mainly focus

on justifying the effectiveness of proposed strategies and apply inconsistent pipelines

for adversarial training, which leaves revealing important elements for training robust

models still a missing piece in current adversarial research.

In this chapter, we provide the first rigorous diagnosis of different adversarial

learning strategies, under a unified training and testing framework, on the large-scale

ImageNet dataset [173]. We discover two intriguing properties of adversarial training,

which are essential for training models with stronger robustness. First, though Batch

Normalization (BN) [92] is known as a crucial component to help deep networks achieve

state-of-the-arts performance on various visual tasks, it may become a major obstacle

for securing robustness against strong attacks in the context of adversarial training. By

benchmarking different strategies for boosting robustness, we observe an unexpected

phenomenon—removing clean images from training data is the most effective one. We

91

relate this phenomenon to the conjecture that clean images and adversarial images

are drawn from two different domains. This two-domain hypothesis may explain the

limitation of BN when training with a mixture of clean and adversarial images, as

estimating normalization statistics on this mixture distribution is challenging. We

further show that adversarial training without removing clean images can also obtain

strong robustness, if the mixture distribution is disentangled at BN by estimating

normalization statistics separately on clean images and adversarial images, i.e., one

set of BN exclusively runs on adversarial images and another set of BN exclusively

runs on clean images. An alternative solution to avoiding mixture distribution for

normalization is to simply replace all BNs with batch-unrelated normalization layers,

e.g., group normalization [219], where normalization statistics are estimated on each

image independently. These facts indicate that model robustness is highly related to

normalization in adversarial training. Furthermore, additional performance gain is

observed via enforcing consistent behavior of BN during training and testing.

Second, we find that our so-called “deep” networks are still shallow for the task of

adversarial learning, and simply going deeper can effectively boost model robustness.

Experiments show that directly adding more layers to “deep” networks only marginally

improves accuracy for standard training, but substantial and consistent robustness

improvements are observed in adversarial training, even if we push the network capacity

to an unprecedented scale, i.e., ResNet-638. This phenomenon suggests that larger

networks are demanded for the task of adversarial learning, as the learning target, i.e.,

adversarial images, lie in a much more complex distribution than clean images.

In summary, this chapter reveals two intriguing properties of adversarial training:

(1) properly handling normalization is essential for obtaining models with strong

robustness; and (2) our so-called “deep” networks are still shallow for the task of adver-

sarial learning. We hope these findings can benefit future research on understanding

adversarial training and improving adversarial robustness.

92

6.2 Related Work

Adversarial training. Adversarial training constitutes the current foundation of

state-of-the-arts for defending against adversarial attacks. It is first developed in [64]

where both clean images and adversarial images are used for training. [96] propose to

improve robustness further by encouraging the logits from the pairs of clean images

and adversarial counterparts to be similar. Instead of using both clean and adversarial

images for training, [128] formulate adversarial training as a min-max optimization and

train models exclusively on adversarial images. Subsequent works are then proposed

to further improve the model robustness [21], [76], [77], [161], [202], [228], [238], [241],

[243] or accelerate the adversarial training process [177], [208], [239]. However, as

these works mainly focus on demonstrating the effectiveness of their own proposed

mechanisms, a fair and detailed diagnosis of large-scale adversarial training strategies1

remains as a missing piece. In this chapter, we provide the first detailed diagnosis

which reveals two intriguing properties of training adversarial defenders at scale.

Normalization Layers. Normalization is an effective technique to accelerate and

regularize the training of deep networks. Different methods are proposed to exploit

batch-wise (e.g., BN [92]), layer-wise (e.g., layer normalization [6]) or channel-wise

(e.g., instance normalization [203] and group normalization [219]) information for

estimating normalization statistics. Different from traditional visual tasks where BN

usually yields much stronger performance than other normalization methods, we show

that BN may become a major obstacle for achieving strong robustness in the context

of adversarial training, and properly handling normalization is an essential factor to

improve adversarial robustness.
1Though there are no prior works on diagnosing large-scale adversarial training, we notice there

are several recent works on performing detailed diagnoses of adversarial training on small datasets
like CIFAR-10 [65], [152], [169]. We refer interested readers to these works for details.

93

6.3 Adversarial Training Framework

As inconsistent adversarial training pipelines were applied in previous works [96], [228],

it is hard to identify which elements are important for obtaining robust models. To

this end, we provide a unified framework to train and to evaluate different models, for

the sake of fair comparison.

Training Parameters. We use the publicly available adversarial training pipeline2

to train all models with different strategies on ImageNet. We select ResNet-152 [72]

as the baseline network, and apply projected gradient descent (PGD) [128] as the

adversarial attacker to generate adversarial examples during training. The hyper-

parameters of the PGD attacker are: maximum perturbation of each pixel ϵ = 16,

attack step size α = 1, number of attack iterations N = 30, and the targeted class is

selected uniformly at random over the 1000 ImageNet categories. We initialize the

adversarial image by the clean counterpart with probability = 0.2, or randomly within

the allowed ϵ cube with probability = 0.8. All models are trained for a total of 110

epochs, and we decrease the learning rate by 10× at the 35-th, 70-th, and 95-th epoch.

Evaluation. For performance evaluation, we mainly study adversarial robustness

(rather than clean image accuracy) in this chapter. Specifically, we follow the setting

in [96], [228], where the targeted PGD attacker is chosen as the white-box attacker to

evaluate robustness. The targeted class is selected uniformly at random. We constrain

the maximum perturbation of each pixel ϵ = 16, set the attack step size α = 1, and

measure the robustness by defending against PGD attacker of 2000 attack iterations

(i.e., PGD-2000). As in [96], [228], we always initialize the adversarial perturbation

from a random point within the allowed ϵ-cube.

In the experiments, we apply these training and evaluation settings to all models

by default, unless otherwise stated.
2https://github.com/facebookresearch/ImageNet-Adversarial-Training

94

https://github.com/facebookresearch/ImageNet-Adversarial-Training

6.4 Exploring Normalization Techniques in Adver-
sarial Training

6.4.1 On the Effects of Clean Images in Adversarial Training

We first elaborate on the effectiveness of different adversarial training strategies on

model robustness. Adversarial training can be dated back to [64], where a mixture

of clean images and the corresponding adversarial counterparts are used for training.

We choose this strategy as our starting point, which has the following loss function:

Ĵ(θ, x, y) = αJ(θ, xclean, y) + (1− α)J(θ, xadv, y), (6.1)

where J(·) is the loss function, θ is the network parameter, y is the ground-truth,

and training pairs {xclean, xadv} are comprised of clean images and their adversarial

counterparts, respectively. The parameter α balances the relative importance between

clean image loss and adversarial image loss. We set α = 0.5 following [64]. With

our adversarial training framework, this model can achieve 20.9% accuracy against

PGD-2000 attacker. Besides this baseline, we also study the effectiveness of two

recently proposed strategies [96], [128], and provide the results in the following.

Ratio of clean images. Different from the canonical form in [64], Madry et al. [128]

apply the min-max formulation for adversarial training where no clean images are

used. We note this min-max type optimization can be dated as early as [205]. We

hereby investigate the relationship between model robustness and the ratio of clean

images used for training. Specifically, for each training mini-batch, we keep adversarial

images unchanged, but removing their clean counterparts by 20%, 40%, 60%, 80%

and 100%. We report the results in Figure 6.1. Interestingly, removing a portion

of clean images from training data can significantly improve model robustness, and

the strongest robustness can be obtained by completely removing clean images from

the training set, i.e., it achieves an accuracy of 39.2% against PGD-2000 attacker,

outperforming the baseline model by a large margin of 18.3%.

95

100% 80% 60% 40% 20% 0%
ratio of clean images

10

15

20

25

30

35

40

45

ac
cu

ra
cy

 a
ga

in
st

 P
G

D
-2

00
0

(%
) 39.2

20.9

Figure 6.1. The relationship between model robustness and the portion of clean
images used for training. We observe that the strongest robustness can be obtained by
training completely without clean images, surpassing the baseline model by 18.3% accuracy
against PGD-2000 attacker.

Adversarial logits pairing. For performance comparison, we also explore the ef-

fectiveness of an alternative training strategy, adversarial logits pairing (ALP) [96].

Compared with the canonical form in [64], ALP imposes an additional loss to encourage

the logits from the pairs of clean images and adversarial counterparts to be similar. As

shown in Figure 6.2, our re-implemented ALP obtains an accuracy of 23.0% against

PGD-2000 attacker3, which outperforms the baseline model by 2.1%. Compared with

the strategy of removing clean images, this improvement is much smaller.

Discussion. Given the results above, we conclude that training exclusively on adver-

sarial images is the most effective strategy for boosting model robustness. For example,

by defending against PGD-2000 attacker, the baseline strategy in [64] (referred to as

100% adv + 100% clean) obtains an accuracy of 20.9%. Adding an loss of logits pairing

[96] (referred to as 100% adv + 100% clean, ALP) slightly improves the performance

by 2.1%, while completely removing clean images [128], [228] (referred to as 100%

adv + 0% clean) boosts the accuracy by 18.3%. We further plot a comprehensive

evaluation curve of these three training strategies in Figure 6.2, by varying the number
3Surprisingly, we note our reproduced ALP result is significantly stronger than the result reported

in the original ALP paper [96], as well in an independent study [50]. We identify this performance
gap is mainly due to different settings of training parameter, and provide a detailed diagnosis in the
supplementary material.

96

10 100 200 500 1000 1500 2000
attack iterations

20

25

30

35

40

45

50

55

ac
cu

ra
cy

 (%
)

39.2

20.9

23.0

38.9

23.5

25.2

39.6

26.6

27.3

Figure 6.2. Comprehensive robust evaluation on ImageNet. For models trained
with different strategies, we show their accuracy against PGD attackers with 10 to 2000
iterations. Only the curve of 100% adv + 0% clean becomes asymptotic when evaluating
against attackers with more iterations.

of PGD attack iteration from 10 to 2000. Surprisingly, only 100% adv + 0% clean can

ensure model robustness against strong attacks, i.e., performance becomes asymptotic

when allowing PGD attacker to perform more attack iterations. Training strategies

which involve clean images for training are suspicious to result in worse robustness, if

PGD attackers are allowed to perform more attack iterations. In the next section, we

will study how to make these training strategies, i.e., 100% adv + 100% clean and

100% adv + 100% clean, ALP to secure their robustness against strong attacks.

6.4.2 The Devil is in the Batch Normalization

Two-domain hypothesis. Compared to feature maps of clean images, [228] show

that feature maps of their adversarial counterparts tend to be more noisy. Meanwhile,

several works [54], [110], [111], [134], [149] demonstrate it is possible to build classifiers

to separate adversarial images from clean images. These studies suggest that clean

images and adversarial images are drawn from two different domains4. This two-

domain hypothesis may provide an explanation to the unexpected observation (see

Sec. 6.4.1) and we ask—why simply removing clean images from training data can

largely boost adversarial robustness?
4Or more precisely, “natural” images collected in the datasets and the corresponding adversarial

images may come from two different distributions.

97

10 100 200 500 1000 1500 2000
attack iterations

20

25

30

35

40

45

50

55

ac
cu

ra
cy

 (%
)

39.2

38.3

35.3

38.9

38.5

35.4

39.6

38.8

35.9

Figure 6.3. Disentangling the mixture distribution for normalization secures
model robustness. Unlike the blue curves in Figure 6.2, these new curves become
asymptotic when evaluating against attackers with more iterations, which indicate that the
networks using MBNadv can behave robustly against PGD attackers with different attack
iterations, even if clean images are used for training.

As a crucial element to help deep network achieve state-of-the-art performance

on various visual tasks, BN is widely adopted in many network architectures, e.g.,

Inception [194], ResNet [72] and DenseNet [84]. The normalization statistics of BN

are estimated across different images. However, exploiting batch-wise statistics is

a challenging task if input images are drawn from different domains, and therefore

networks fail to learn a unified representation on this mixture distribution. Given this

two-domain hypothesis, when training with both clean and adversarial images, the

usage of BN may fail to secure model robustness against strong adversarial attackers.

Based on the analysis above, an intuitive solution arise: accurately estimating

normalization statistics should enable models to train robustly even if clean images

and adversarial images are mixed at each training mini-batch. To this end, we explore

two ways, where the mixture distribution is disentangled at normalization layers, for

validating this argument: (1) maintaining separate BNs for clean/adversarial images;

or (2) replacing BNs with batch-unrelated normalization layers.

Training with Mixture BN. Current networks estimate BN statistics using the

mixed features from both clean and adversarial images, which leads to weak model

robustness as shown in Figure 6.2. Xie et al. [224] show that decoupling the normal-

ization statistics in adversarial training can effectively improve recognition models.

98

conv

BNadv+clean

ReLU

conv

MBNadv

ReLU

MBNclean

xadv,xclean

xadv xclean

xadv,xclean

Figure 6.4. Standard BN (left) estimates normalization statistics on the mixture distribu-
tion. MBN (right) disentangles the distribution by constructing different mini-batch for
clean and adversarial images to estimate normalization statistics.

Here, to study model robustness, we apply this Mixture BN (MBN) design [224] for

accurate BN statistics estimation (illustrated in Figure 6.4). Specifically, in MBN, we

assign one set of BN to exclusively run on adversarial images (referred to as MBNadv),

and another set of BN to exclusively run on clean images (referred to as MBNclean).

We do not change the structure of other layers. We verify the effectiveness of this new

architecture with two (previously less robust) training strategies, i.e., 100% adv +

100% clean and 100% adv + 100% clean, ALP.

At inference time, whether an image is adversarial or clean is unknown. We

thereby measure the performance of networks by applying either MBNadv or MBNclean

separately. The results are shown in Table 6.1. We find the performance is strongly

related to how BN is trained: when using MBNclean, the trained network achieves

nearly the same clean image accuracy as the whole network trained exclusively on clean

images; when using MBNadv, the trained network achieves nearly the same adversarial

robustness as the whole network trained exclusively on adversarial images. Other

factors, like whether ALP is applied for training, only cause subtle differences in

performance. We further plot an extensive robustness evaluation curve of different

training strategies in Figure 6.3. Unlike Figure 6.2, we observe that networks using

MBNadv now can secure their robustness against strong attacks, e.g., the robustness

is asymptotic when increasing the number of attack iteration from 500 to 2000.

99

channels
-3

-2

-1

0

1

2

3

ru
nn

in
g

m
ea

n

channels
0

0.2

0.4

0.6

0.8

1

1.2

ru
nn

in
g

va
r

Figure 6.5. Statistics of running mean and running variance of MBN on randomly sampled
20 channels in a ResNet-152’s res3 block. This suggests that clean and adversarial images
induce significantly different normalization statistics.

The results in Table 6.1 suggest that BN statistics characterize different model

performance. For a better understanding, we randomly sample 20 channels in a

residual block and plot the corresponding running statistics of MBNclean and MBNadv

in Figure 6.5. We observe that clean images and adversarial images induce significantly

different running statistics, though these images share the same set of convolutional

filters for feature extraction. This observation further supports that (1) clean images

and adversarial images come from two different domains; and (2) current networks fail

to learn a unified representation on these two domains. Interestingly, we also find that

adversarial images lead to larger running mean and variance than clean images. This

phenomenon is also consistent with the observation that adversarial images produce

noisy-patterns/outliers at the feature space [228].

We note this MBN design is also used as a practical trick for training better

GAN [63]. Chintala et al. [31] suggest to construct each mini-batch with only real or

generated images when training discriminators, as generated images and real images

belong to different domains at an early training stage. However, unlike our situation

100

training strategy clean image
accuracy (%)

0% adv + 100% clean 78.9
MBNclean, 100% adv + 100% clean +0.4
MBNclean, 100% adv + 100% clean, ALP -0.5

training strategy PGD-2000
accuracy (%)

100% adv + 0% clean 39.2
MBNadv, 100% adv + 100% clean -0.9
MBNadv, 100% adv + 100% clean, ALP -3.9

Table 6.1. MBN statistics characterize model performance. Using MBNclean/MBNadv,
the trained models achieve strong performance on clean/adversarial images.

where BN statistics estimated on different domains remain divergent after training, a

successful training of GAN, i.e., able to generate natural images with high quality,

usually learns a unified set of BN statistics on real and generated images.

Training with batch-unrelated normalization layers. Instead of applying this

MBN design to disentangle the mixture distribution, we can also train networks with

batch-unrelated normalization layers, which avoids exploiting the batch dimension

to calculate statistics, for the same purpose. We choose Group Normalization (GN)

for this experiment, as GN can reach a comparable performance to BN on various

vision tasks [219]. Specifically, for each image, GN divides the channels into groups

and computes the normalization statistics within each group. By replacing all BNs

with GNs, the mixture training strategy 100% adv + 100% clean now can ensure

robustness against strong attacks, i.e., the model trained with GN achieves 39.5%

accuracy against PGD-500, and increasing attack iterations to 2000 only cause a

marginal performance drop by 0.5% (39.0% accuracy against PGD-2000). Exploring

other batch-unrelated normalization in adversarial training remains as future works.

Exceptional cases. There are some situations where models directly trained with

the original BN design can ensure their robustness against strong attacks, even if

clean images are included for adversarial training. Our experiments show constraining

the maximum perturbation of each pixel ϵ to be a smaller value, e.g., ϵ = 8, is one

101

channels
-2

-1.5

-1

-0.5

0

0.5

1

1.5

m
ea
n

batch_stats_1
batch_stats_2
running_stats

channels
0

0.1

0.2

0.3

0.4

0.5

0.6
va
r

batch_stats_1
batch_stats_2
running_stats

Figure 6.6. Comparison of batch statistics and running statistics of BN on randomly
sampled 20 channels in a ResNet-152’s res3 block. We observe that batch mean can
converge to running mean, while batch variance still differs from running variance.

of these exceptional cases. [96], [142] also show that adversarial training with clean

images can secure robustness on small datasets, i.e., MNIST, CIFAR-10 and Tiny

ImageNet. Intuitively, generating adversarial images on these much simpler datasets

or under a smaller perturbation constraint induces a smaller gap between these two

domains, therefore making it easier for networks to learn a unified representation on

clean and adversarial images. Nonetheless, in this chapter, we stick to the standard

protocol in [96] and [228] where adversarial robustness is evaluated on ImageNet with

the perturbation constraint ϵ = 16.

Inconsistent behavior of BN. As the concept of “batch” is not legitimate at

inference time, BN behaves differently at training and testing [92]: during training,

the mean and variance are computed on each mini-batch, referred to as batch statistics;

during testing, there is no actual normalization performed—BN uses the mean and

variance pre-computed on the training set (often by running average) to normalize

data, referred to as running statistics.

102

training strategy PGD-2000
accuracy (%)

100% adv + 0% clean 39.2
100% adv + 0% clean* +3.0
MBNadv, 100% adv + 100% clean 38.3
MBNadv, 100% adv + 100% clean* +1.6
MBNadv, 100% adv + 100% clean, ALP 35.3
MBNadv, 100% adv + 100% clean, ALP* +2.8

Table 6.2. Enforcing a consistent behavior of BN at the training stage and the testing
stage significantly boosts adversarial robustness. * denotes that running statistics is used
at the last 10 training epochs.

For traditional classification tasks, batch statistics usually converge to running

statistics by the end of training, thus (practically) making the impact of this incon-

sistent behavior negligible. Nonetheless, this empirical assumption may not hold

in the context of adversarial training. We check this statistics matching of models

trained with the strategy 100% adv + 0% clean, where the robustness against strong

attacks is secured. We randomly sample 20 channels in a residual block, and plot the

batch statistics computed on two randomly sampled mini-batches, together with the

pre-computed running statistics. In Figure 6.6, interestingly, we observe that batch

mean is almost equivalent to running mean, while batch variance does not converge

to running variance yet on certain channels. Given this fact, we then study if this

inconsistent behavior of BN affects model robustness in adversarial training.

6.4.3 Revisiting Statistics Estimation of BN

A heuristic approach. Instead of developing a new training strategy to make batch

statistics converge to running statistics by the end of training, we explore a more

heuristic solution: applying pre-computed running statistics for model training during

the last 10 epochs. We report the performance comparison in Table 6.2. By enabling

BNs to behave consistently at training and testing, this approach can further boost

the model robustness by 3.0% with the training strategy 100% adv + 0% clean. We

also successfully validate the generality of this approach on other two robust training

103

strategies. For example, it can improve the model robustness under the training

strategies MBNadv, 100% adv + 100% clean and MBNadv, 100% adv + 100% clean,

ALP by 1.6% and 2.8%, respectively. These results suggest that model robustness can

be benefited from a consistent behavior of BN at training and testing. Moreover, this

approach comes for “free”—no additional training cost is incurred.

6.4.4 Beyond Adversarial Robustness

On the importance of training convolutional filters adversarially. In Section

6.4.2, we study the model performance when the mixture distribution is disentangled

for normalization—by applying either MBNclean or MBNadv, the trained models achieve

strong performance on either clean images or adversarial images. This result suggests

that clean and adversarial images share the same convolutional filters to effectively

extract features. We hereby further explore whether the filters learned exclusively on

adversarial images can extract features effectively on clean images, and vice versa. We

first take a model trained with the strategy 100% adv + 0% clean, and then finetune

BNs using only clean images for a few epochs. Interestingly, we find the accuracy

on clean images can be significantly boosted from 62.3% to 73%, which is only 5.9%

worse than the standard training setting, i.e., 78.9%.

These result indicates that convolutional filters learned exclusively on adversarial

images can also be effectively applied to clean images. However, we find the opposite

direction does not work—convolutional filters learned on clean images cannot extract

features robustly on adversarial images (e.g., 0% accuracy against PGD-2000 after

finetuning BNs with adversarial images). This phenomenon indicates the importance

of training convolutional filters adversarially, as such learned filters can also extract

features from clean images effectively. The findings here also are related to the

discussion of robust/non-robustness features in [90]. Readers with interests are

recommended to refer to this concurrent work for more details.

104

Limitation of adversarial training. We note that our adversarially trained models

exhibit a performance trade-off between clean accuracy and robustness—the training

strategies that achieve strong model robustness usually result in relatively low accuracy

on clean images. For example, 100% adv + 0% clean, MBNadv, 100% adv + 100%

clean and MBNadv, 100% adv + 100% clean, ALP only report 62.3%, 64.4% and

65.9% of clean image accuracy. By replacing BNs with GNs, 100% adv + 100%

clean achieves much better clean image accuracy, i.e., 67.5%, as well maintaining

strong robustness. We note that this trade-off is also observed in the prior work [201].

Though this performance trade-off may be inevitable for a given network, the recent

work [7] show it is possible to make adversarially trained models to exhibit a better

trade-off between clean accuracy and robustness. Future attentions are deserved on

exploring this direction further.

6.5 Going Deeper in Adversarial Training

As discussed in Section 6.4.2, current deep networks are not capable of learning a

unified representation on clean and adversarial images. It may suggest that the

“deep” network we used, i.e., ResNet-152, still underfits the complex distribution

of adversarial images, which motivates us to apply larger networks for adversarial

training. We simply instantiate the concept of larger networks by going deeper, i.e.,

adding more residual blocks. For traditional image classification tasks, the benefits

brought by adding more layers to “deep” networks is diminishing, e.g., the blue curve

in Figure 6.7 shows that the improvement of clean image accuracy becomes saturated

once the network depth goes beyond ResNet-200.

For a better illustration, we train deeper models exclusively on adversarial images

and observe a possible underfitting phenomenon as shown in Figure 6.7. In particular,

we apply the heuristic training strategy in Section 6.4.3 to mitigate the possible

(negative) effects brought by BN. We observe that adversarial learning task exhibits

105

Figure 6.7. Compared to traditional image classification tasks, adversarial training
exhibits a stronger demand on deeper networks. The performance gain of traditional image
classification becomes marginal after ResNet-200 while the adversarial robustness keeps
increasing even for the very deep ResNet-638.

a strong “thirst” on deeper networks to obtain stronger robustness. For example,

increasing depth from ResNet-152 to ResNet-338 significantly improves the model

robustness by 2.4%, while the corresponding improvement in the “clean” training

setting (referred to as 0% adv + 100% clean) is only 0.5%. Surprisingly, this observation

still holds even by pushing the network capacity to an unprecedented scale, i.e., the

very deep ResNet with 638 layers (ResNet-638).

Given the empirical results above, we can conclude that our so-called “deep”

networks (e.g., ResNet-152) are still shallow for the task of adversarial learning,

and larger networks should be used for fitting this complex distribution. Besides

our findings on network depth, [128] show increase network width also substantially

improve network robustness. These empirical observations also corroborate with the

recent theoretical studies [57], [145] which argues that robust adversarial learning

needs much more complex classifiers.

Besides adversarial robustness, we observe that these adversarially trained models

also exhibit a consistent performance gain on clean image accuracy when increasing the

network depth. It is worth to mention that, our deepest network, ResNet-638, achieves

an accuracy of 68.7% on clean images, substantially outperforming the relatively

shallow network ResNet-152 by 6.1%.

106

6.6 Summary

In this chapter, we reveal two intriguing properties of adversarial training at scale: (1)

conducting normalization in the right manner is essential for training robust models

on large-scale datasets like ImageNet; and (2) our so-called “deep” networks are still

shallow for the task of adversarial learning. Our discoveries may also be inherently

related to our two-domain hypothesis—clean images and adversarial images are drawn

from different distributions. We hope these findings can facilitate fellow researchers

for better understanding of adversarial training as well as further improvement of

adversarial robustness.

107

Part III

Robust Representation Learning
Improves Generalization

108

Chapter 7

Adversarial Examples Improve
Image Recognition

Adversarial examples are commonly viewed as a threat to ConvNets. Here we present

an opposite perspective: adversarial examples can be used to improve image recog-

nition models if harnessed in the right manner. We propose AdvProp, an enhanced

adversarial training scheme which treats adversarial examples as additional examples,

to prevent overfitting. Key to our method is the usage of a separate auxiliary batch

norm for adversarial examples, as they have different underlying distributions to

normal examples.

We show that AdvProp improves a wide range of models on various image recog-

nition tasks and performs better when the models are bigger. For instance, by

applying AdvProp to the latest EfficientNet-B7 [197] on ImageNet, we achieve sig-

nificant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A

(+7.0%) and Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our

method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra

data. This result even surpasses the best model in [129] which is trained with 3.5B

Instagram images (∼3000× more than ImageNet) and ∼9.4× more parameters. Mod-

els are available at https://github.com/tensorflow/tpu/tree/master/models/

official/efficientnet.

109

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

7.1 Introduction

Adversarial examples, which are crafted by adding imperceptible perturbations to

images, can lead deep networks to make wrong predictions. The existence of adversarial

examples not only reveals the limited generalization ability of deep networks, but

also poses security threats on the real-world deployment of these models. Since the

first discovery of the vulnerability of deep networks to adversarial attacks [196], many

efforts [28], [64], [95], [96], [100], [128], [153], [190], [200], [228], [241] have been made

to improve network robustness.

In this chapter, rather than focusing on defending against adversarial examples, we

shift our attention to leveraging adversarial examples to improve accuracy. Previous

works show that training with adversarial examples can enhance model generalization

but are restricted to certain situations—the improvement is only observed either on

small datasets (e.g., MNIST) in the fully-supervised setting [64], [108], or on larger

datasets but in the semi-supervised setting [139], [160]. Meanwhile, recent works [96],

[100], [228] also suggest that training with adversarial examples on large datasets, e.g.,

ImageNet [173], with supervised learning results in performance degradation on clean

images. To summarize, it remains an open question of how adversarial examples can

be used effectively to help vision models.

We observe all previous methods jointly train over clean images and adversarial

examples without distinction even though they should be drawn from different underly-

ing distributions. We hypothesize this distribution mismatch between clean examples

and adversarial examples is a key factor that causes the performance degradation in

previous works [96], [100], [228].

Here we propose AdvProp, short for Adversarial Propagation, a new training scheme

that bridges the distribution mismatch with a simple yet highly effective two-batchnorm

approach. Specifically, we propose to use two batch norm statistics, one for clean images

110

Figure 7.1. AdvProp improves image recognition. By training models on ImageNet,
AdvProp helps EfficientNet-B7 [197] to achieve 85.2% accuracy on ImageNet [173],
52.9% mCE (mean corruption error, lower is better) on ImageNet-C [74], 44.7% accuracy
on ImageNet-A [78] and 26.6% accuracy on Stylized-ImageNet [59], beating its vanilla
counterpart by 0.7%, 6.5%, 7.0% and 4.8%, respectively. Theses sample images are
randomly selected from the category “goldfinch”.

and one auxiliary for adversarial examples. The two batchnorms properly disentangle

the two distributions at normalization layers for accurate statistics estimation. We

show this distribution disentangling is crucial, enabling us to successfully improve,

rather than degrade, model performance with adversarial examples.

To our best knowledge, our work is the first to show adversarial examples can

improve model performance in the fully-supervised setting on the large-scale ImageNet

dataset. For example, an EfficientNet-B7 [197] trained with AdvProp achieves 85.2%

top-1 accuracy, beating its vanilla counterpart by 0.8%. The improvement by AdvProp

is more notable when testing models on distorted images. As shown in Figure 7.1,

AdvProp helps EfficientNet-B7 to gain an absolute improvement of 9.0%, 7.0% and

5.0% on ImageNet-C [74], ImageNet-A [78] and Stylized-ImageNet [59], respectively.

As AdvProp effectively prevents overfitting and performs better with larger net-

works, we develop a larger network, EfficientNet-B8, by following similar compound

scaling rules in [197]. With AdvProp, EfficientNet-B8 achieves the state-of-the-art

85.5% top-1 accuracy on ImageNet without extra data. This result even surpasses

the best model in [129], which is pretrained on 3.5B extra Instagram images (∼3000×

more than ImageNet) and requires ∼9.4× more parameters than our EfficientNet-B8.

111

7.2 Related Work

Adversarial Training. Adversarial training, which trains networks with adversarial

examples, constitutes the current foundation of state-of-the-arts for defending against

adversarial attacks [64], [100], [128], [228]. Although adversarial training significantly

improves model robustness, how to improve clean image accuracy with adversarial

training is still under-explored. VAT [139] and deep co-training [160] attempt to

utilize adversarial examples in semi-supervised settings, but they require enormous

extra unlabeled images. Under supervised learning settings, adversarial training

is typically considered hurting accuracy on clean images [164], e.g., ∼10% drop on

CIFAR-10 [128] and ∼15% drop on ImageNet [228]. Tsipras et al. [201] argue that the

performance tradeoff between adversarial robustness and standard accuracy is provably

inevitable, and attribute this phenomenon as a consequence of robust classifiers learning

fundamentally different feature representations than standard classifiers. Other works

try to explain this tradeoff phenomenon from the perspective of the increased sample

complexity of adversary [137], [145], [189], the limited amount of training data [21],

[144], [175], [202], [238], or network overparameterization [163].

This chapter focuses on standard supervised learning without extra data. Although

using similar adversarial training techniques, we stand on an opposite perspective to

previous works—we aim to use adversarial examples to improve clean image accuracy.

Benefits of Learning Adversarial Features. Many works corroborate that train-

ing with adversarial examples brings additional features to deep networks. For example,

compared with clean images, adversarial examples make network representations align

better with salient data characteristics and human perception [201]. Moreover, such

trained models are much more robust to high frequency noise [236]. Zhang et al. [243]

further suggest these adversarially learned feature representations are less sensitive to

texture distortions and focus more on shape information.

112

Our AdvProp can be characterized as a training paradigm which fully exploits the

complementarity between clean images and their corresponding adversarial examples.

The results further suggest that adversarial features are indeed beneficial for recognition

models, which agree with the conclusions drawn from these aforementioned studies.

Data augmentation. Data augmentation, which applies a set of label-preserving

transformations to images, serves as an important and effective role to prevent networks

from overfitting [72], [99], [183]. Besides traditional methods like flipping and cropping,

many advanced augmentations are proposed recently, e.g., applying masking out [42]

or adding Gaussian noise [123] to regions in images, or mixing up pairs of images and

their labels in a convex manner [242]. Recent works also demonstrate it is possible to

learn augmentation policies automatically for achieving better performance on image

classification [37], [38], [104], [116], [244] and object detection [38], [249].

Our work can be regarded as one type of data augmentation: creating additional

training samples by injecting noise. However, nearly all previous attempts, by augment-

ing either with random noise (e.g., Table 5 in [100] shows the result of training with

random normal perturbations) or adversarial noise [96], [100], [200], fail to improve

accuracy on clean images.

7.3 A Preliminary Way to Boost Performance

Madry et al. [128] formulate adversarial training as a min-max game and train models

exclusively on adversarial examples to effectively boost model robustness. However,

such trained models usually cannot generalize well to clean images as shown in [128],

[228]. We validate this result by training a medium-scale model (EfficientNet-B3) and

a large-scale model (EfficientNet-B7) on ImageNet using PGD attacker1 [128]—both

adversarially trained models obtain much lower accuracy on clean images compared
1For PGD attacker, we set the maximum perturbation per pixel ϵ=4, the step size α=1 and the

number of attack iteration n = 5.

113

81.7

84.5

78.2

83.5

81.5

84.8

77
78

79

80

81

82
83

84

85

86

B3 B7

Im
ag

eN
et

To
p-

1
Ac

cu
ra

cy
(%

) Vanilla Training
Madry's Adversarial Training
Madry's Adversarial Training + Fine-tuning

Figure 7.2. Two take-home messages from the experiments on ImageNet: (1) training
exclusively on adversarial examples results in performance degradation; and (2) simply
training with adversarial examples and clean images in turn can improve network perfor-
mance on clean images. Fine-tuning details: we train networks with adversarial examples
in the first 175 epochs, and then fine-tune with clean images in the rest epochs.

to their vanilla counterparts. For instance, such adversarially trained EfficientNet-

B3 only obtains an accuracy of 78.2% on the clean images, whereas vanilla trained

EfficientNet-B3 achieves 81.7% (see Figure 7.2).

We hypothesize such performance degradation is mainly caused by distribution

mismatch—adversarial examples and clean images are drawn from two different

domains therefore training exclusively on one domain cannot well transfer to the other.

If this distribution mismatch can be properly bridged, then performance degradation

on clean images should be mitigated even if adversarial examples are used for training.

To validate our hypothesis, we hereby examine a simple strategy—pre-train networks

with adversarial examples first, and then fine-tune with clean images.

The results are summarized in Figure 7.2. As expected, this simple fine-tuning

strategy (marked in light orange) always yields much higher accuracy than Madry’s

adversarial training baseline (marked in grey), e.g., it increases accuracy by 3.3% for

EfficientNet-B3. Interestingly, while compared to the standard vanilla training setting

where only clean images are used (marked in blue), this fine-tuning strategy sometimes

even help networks to achieve superior performance, e.g., it increases EfficientNet-B7

accuracy by 0.3%, achieving 84.8% top-1 accuracy on ImageNet.

114

The observation above delivers a promising signal—adversarial examples can be

beneficial for model performance if harnessed properly. Nonetheless, we note that

this approach fails to improve performance in general, e.g., though such trained

EfficientNet-B3 significantly outperforms the Madry’s adversarial training baseline, it

is still slightly below (-0.2%) the vanilla training setting. Therefore, a natural question

arises: is it possible to distill valuable features from adversarial examples in a more

effective manner and boost model performance further generally?

7.4 Approach

The results in Sec. 7.3 suggest that properly integrating information from both

adversarial examples and clean images even in a simple manner improves model

performance. However, such fine-tuning strategy may partially override features

learned from adversarial examples, leading to a sub-optimal solution. To address this

issue, we propose a more elegant approach, named AdvProp, to jointly learn from

clean images and adversarial examples. Our method handles the issue of distribution

mismatch via explicitly decoupling batch statistics on normalization layers, and thus

enabling a better absorption from both adversarial and clean features. In this section,

we first revisit the adversarial training regime in Sec. 7.4.1, and then introduce how

to enable disentangled learning for a mixture of distributions via auxiliary BNs in

Sec. 7.4.2. Finally, we summarize the training and testing pipeline in Sec. 7.4.3.

7.4.1 Adversarial Training

We first recall the vanilla training setting, and the objective function is

arg min
θ

E(x,y)∼D

[︃
L(θ, x, y)

]︃
, (7.1)

where D is the underlying data distribution, L(·, ·, ·) is the loss function, θ is the

network parameter, and x is training sample with ground-truth label y.

115

Consider Madry’s adversarial training framework [128], instead of training with

original samples, it trains networks with maliciously perturbed samples,

arg min
θ

E(x,y)∼D

[︃
max
ϵ∈S

L(θ, x + ϵ, y)
]︃
, (7.2)

where ϵ is a adversarial perturbation, S is the allowed perturbation range. Though

such trained models have several nice properties as described in [201], [236], [243],

they cannot generalize well to clean images [128], [228].

Unlike Madry’s adversarial training, our main goal is to improve network perfor-

mance on clean images by leveraging the regularization power of adversarial examples.

Therefore we treat adversarial images as additional training samples and train networks

with a mixture of adversarial examples and clean images, as suggested in [64], [100],

arg min
θ

[︄
E(x,y)∼D

(︃
L(θ, x, y) + max

ϵ∈S
L(θ, x + ϵ, y)

)︃]︄
. (7.3)

Ideally, such trained models should enjoy the benefits from both adversarial and

clean domains. However, as observed in former studies [64], [100], directly optimizing

Eqn. (7.3) generally yields lower performance than the vanilla training setting on clean

images. We hypothesize that the distribution mismatch between adversarial examples

and clean images prevents networks from accurately and effectively distilling valuable

features from both domains. Next, we will introduce how to properly disentangle

different distributions via our auxiliary batch norm design.

7.4.2 Disentangled Learning via An Auxiliary BN

Batch normalization (BN) [92] serves as an essential component for many state-of-

the-art deep networks [72], [84], [195]. Specifically, BN normalizes input features by

the mean and variance computed within each mini-batch. One intrinsic assumption of

utilizing BN is that the input features should come from a single or similar distributions.

This normalization behavior could be problematic if the mini-batch contains data

from different distributions, therefore resulting in inaccurate statistics estimation.

116

Figure 7.3. Comparison between (a) traditional BN usage and (b) the utilization of
auxiliary BN. The left and right panels illustrate the information flow in the corresponding
network architectures and the estimated normalization statistics when facing a mixture of
adversarial and clean images, respectively.

We argue that adversarial examples and clean images have different underlying

distributions, and the adversarial training framework in Eqn. (7.3) essentially involves

a two-component mixture distribution. To disentangle this mixture distribution into

two simpler ones respectively for the clean and adversarial images, we hereby propose

an auxiliary BN to guarantee its normalization statistics are exclusively preformed on

the adversarial examples. Specifically, as illustrated in Figure 7.3(b), our proposed

auxiliary BN helps to disentangle the mixed distributions by keeping separate BNs to

features that belong to different domains. Otherwise, as illustrated in Figure 7.3(a),

simply maintaining one set of BN statistics results in incorrect statistics estimation,

which could possibly lead to performance degradation.

Note that we can generalize this concept to multiple auxiliary BNs, where the

number of auxiliary BNs is determined by the number of training sample sources.

For example, if training data contains clean images, distorted images and adversarial

117

Algorithm 2: Pseudo code of AdvProp
Data: A set of clean images with labels;
Result: Network parameter θ;

1 for each training step do
2 Sample a clean image mini-batch xc with label y;
3 Generate the corresponding adversarial mini-batch xa using the auxiliary BNs;
4 Compute loss Lc(θ, xc, y) on clean mini-batch xc using the main BNs;
5 Compute loss La(θ, xa, y) on adversarial mini-batch xa using the auxiliary BNs;
6 Minimize the total loss w.r.t. network parameter arg min

θ
La(θ, xa, y) + Lc(θ, xc, y).

7 end
8 return θ

images, then two auxiliary BNs should be maintained. Ablation studies in Sec. 7.5.4

demonstrates that such fine-grained disentangled learning with multiple BNs can

improve performance further. A more general usage of multiple BNs will be further

explored in future works, e.g., [80], [94], [114], [133], [181], [206].

7.4.3 AdvProp

We formally propose AdvProp in Algorithm 2 to accurately acquire clean and adver-

sarial features during training. For each clean mini-batch, we first attack the network

using the auxiliary BNs to generate its adversarial counterpart; next we feed the

clean mini-batch and the adversarial mini-batch to the same network but applied with

different BNs for loss calculation, i.e., use the main BNs for the clean mini-batch and

use the auxiliary BNs for the adversarial mini-batch; finally we minimize the total

loss w.r.t. the network parameter for gradient updates. In other words, except BNs,

all other layers (e.g., convolutional layers) are jointly optimized for both adversarial

examples and clean images.

Note the introduction of auxiliary BN in AdvProp only increases a negligible

amount of extra parameters for network training, e.g., 0.5% more parameters than the

baseline on EfficientNet-B7. At test time, these extra auxiliary BNs are all dropped,

and we only use the main BNs for inference.

118

Experiments show that such disentangled learning framework enables networks

to get much stronger performance than the adversarial training baseline [64], [100].

Besides, compared to the fine-tuning strategy in Sec. 7.3, AdvProp also demonstrates

superior performance as it enables networks to jointly learn useful feature from

adversarial examples and clean examples at the same time.

7.5 Experiments

7.5.1 Experiments Setup

Architectures. We choose EfficientNets [197] at different computation regimes as

our default architectures, ranging from the light-weight EfficientNet-B0 to the large

EfficientNet-B7. Compared to other networks, EfficientNet achieves much better

accuracy and efficiency. We follow the settings in [197] to train these networks:

RMSProp optimizer with decay 0.9 and momentum 0.9; batch norm momentum 0.99;

weight decay 1e-5; initial learning rate 0.256 that decays by 0.97 every 2.4 epochs; a

fixed AutoAugment policy [37] is applied to augment training images.

Adversarial Attackers. We train networks with a mixture of adversarial examples

and clean images as in Eqn. (7.3). We choose Projected Gradient Descent (PGD) [128]

under L∞ norm as the default attacker for generating adversarial examples on-the-fly.

We try PGD attackers with different perturbation size ϵ, ranging from 1 to 4. We set

the number iteration for the attackers n=ϵ+1, except for the case ϵ=1 where n is set

to 1. The attack step size is fixed to α=1.

Datasets. We use the standard ImageNet dataset [173] to train all models. In

addition to reporting performance on the original ImageNet validation set, we go

beyond by testing the models on the following test sets:

• ImageNet-C [74]. The ImageNet-C dataset is designed for measuring the network

robustness to common image corruptions. Specifically, it consists of 15 diverse

119

corruption types, and each type of corruption has five levels of severity, resulting

in 75 distinct corruptions.

• ImageNet-A [78]. The ImageNet-A dataset adversarially collects 7,500 natural,

unmodified but “hard” real-world images. These images are drawn from some chal-

lenging scenarios (e.g., occlusion and fog scene) which are difficult for recognition.

• Stylized-ImageNet [59]. The Stylized-ImageNet dataset is created by removing

local texture cues while retaining global shape information on natural images via

AdaIN style transfer [89]. As suggested in [59], networks are required to learn more

shape-based representations to improve accuracy on Stylized-ImageNet.

Compared to ImageNet, images from ImageNet-C, ImageNet-A and Stylized-

ImageNet are much more challenging, even for human observers.

7.5.2 ImageNet Results and Beyond

ImageNet Results. Figure 7.4 shows the results on the ImageNet validation set.

We compare our method with the vanilla training setting. The family of EfficientNets

provides a strong baseline, e.g., EfficientNet-B7’s 84.5% top-1 accuracy is the prior

art on ImageNet [197].

As different networks favor different attacker strengths when trained with AdvProp

(which we ablate next), we first report the best result in Figure 7.4. Our proposed

AdvProp substantially outperforms the vanilla training baseline on all networks. This

performance improvement is proportional to the network capacity and larger networks

tend to perform better if they are trained with AdvProp. For example, the performance

gain is at most 0.4% for networks smaller than EfficientNet-B4, but is at least 0.6%

for networks larger than EfficientNet-B4.

Compared to the prior art, i.e., 84.5% top-1 accuracy, an EfficientNet-B6 trained

with AdvProp (with ∼2× less FLOPs than EfficientNet-B7) already surpasses it by

120

Figure 7.4. AdvProp boosts model performance over the vanilla training baseline on
ImageNet. This improvement becomes more significant if trained with larger networks.
Our strongest result is reported by the EfficientNet-B7 trained with AdvProp, i.e., 85.2%
top-1 accuracy on ImageNet.

0.3%. Our strongest result is obtained by the EfficientNet-B7 trained with AdvProp

which achieves 85.2% top-1 accuracy on ImageNet, beating the prior art by 0.7%.

Generalization on Distorted ImageNet Datasets. Next, we evaluate models on

distorted ImageNet datasets, which are much more difficult than the original ImageNet

dataset. For instance, though ResNet-50 demonstrates reasonable performance on

ImageNet (76.7% accuracy), it only achieves 74.8% mCE (mean corruption error,

lower is better) on ImageNet-C, 3.1% top-1 accuracy on ImageNet-A and 8.0% top-1

accuracy on Stylized-ImageNet.

The results are summarized in Table 7.1. Again, our proposed AdvProp consistently

outperforms the vanilla training baseline for all models on all distorted datasets. The

improvement here is much more significant than that on the original ImageNet. For

example, AdvProp improves EfficientNet-B3 by 0.2% on ImageNet, and substantially

boosts the performance by 5.1% on ImageNet-C and 3.6% on Stylized-ImageNet.

121

Model ImageNet-C* [74] ImageNet-A [78] Stylized-ImageNet* [59]
mCE ↓ Top-1 Acc. ↑ Top-1 Acc. ↑

ResNet-50 74.8 3.1 8.0
EfficientNet-B0 70.7 6.7 13.1
+ AdvProp (ours) 66.2 (-4.5) 7.1 (+0.4) 14.6 (+1.5)
EfficientNet-B1 65.1 9.0 15.0
+ AdvProp (ours) 60.2 (-4.9) 10.1 (+1.1) 16.7 (+1.7)
EfficientNet-B2 64.1 10.8 16.8
+ AdvProp (ours) 61.4 (-2.7) 11.8 (+1.0) 17.8 (+1.0)
EfficientNet-B3 62.9 17.9 17.8
+ AdvProp (ours) 57.8 (-5.1) 18.0 (+0.1) 21.4 (+3.6)
EfficientNet-B4 60.7 26.4 20.2
+ AdvProp (ours) 58.6 (-2.1) 27.9 (+1.5) 22.5 (+1.7)
EfficientNet-B5 62.3 29.4 20.8
+ AdvProp (ours) 56.2 (-6.1) 34.4 (+5.0) 24.4 (+3.6)
EfficientNet-B6 60.6 34.5 20.9
+ AdvProp (ours) 53.6 (-7.0) 40.6 (+6.1) 25.9 (+4.0)
EfficientNet-B7 59.4 37.7 21.8
+ AdvProp (ours) 52.9 (-6.5) 44.7 (+7.0) 26.6 (+4.8)

Table 7.1. AdvProp significantly boost models’ generalization ability on ImageNet-C,
ImageNet-A and Stylized-ImageNet. The highest result on each dataset is 52.9%, 44.7%
and 26.6% respectively, all achieved by the EfficientNet-B7 trained with AdvProp. *For
ImageNet-C and Stylized-ImageNet, we follow the previous setup [59], [74] to always fix
the testing image size at the scale of 224×224×3 for a fair comparison.

The EfficientNet-B7 trained with AdvProp reports the strongest results on these

datasets, i.e., 52.9% mCE on ImageNet-C, 44.7% top-1 accuracy on ImageNet-A, and

26.6% top-1 accuracy on Stylized-ImageNet. These are the best results so far if models

are not allowed to train with corresponding distortions [59] or extra data [129], [231].

To summarize, the results suggest that AdvProp significantly boosts the general-

ization ability by allowing models to learn much richer internal representations than

the vanilla training. The richer representations not only provide models with global

shape information for better classifying Stylized-ImageNet dataset, but also increase

model robustness against common image corruptions.

Ablation on Adversarial Attacker Strength. We now ablate the effects of at-

tacker strength used in AdvProp on network performance. Specifically, the attacker

strength here is determined by perturbation size ϵ, where larger perturbation size

indicates stronger attacker. We try with different ϵ ranging from 1 to 4, and report

the corresponding accuracy on the ImageNet validation set in Table 7.2.

122

B0 B1 B2 B3 B4 B5 B6 B7
PGD5 (ϵ=4) 77.1 79.2 80.3 81.8 83.3 84.3 84.8 85.2
PGD4 (ϵ=3) 77.3 79.4 80.4 81.9 83.3 84.3 84.7 85.1
PGD3 (ϵ=2) 77.4 79.4 80.4 81.9 83.1 84.3 84.7 85.0
PGD1 (ϵ=1) 77.6 79.6 80.5 81.8 83.1 84.3 84.6 85.0

Table 7.2. ImageNet performance of models trained with AdvProp at different attack
strength. In general, smaller networks favor weaker attackers, while larger networks favor
stronger attackers.

With AdvProp, we observe smaller networks favor weaker attackers. For exam-

ple, the light-weight EfficientNet-B0 achieves the best performance by using 1-step

PGD attacker with perturbation size 1 (PGD1 (ϵ=1)), significantly outperforms the

counterpart which trained with 5-step PGD attacker with perturbation size 4 (PGD5

(ϵ=4)), i.e., 77.6% vs. 77.1%. This phenomenon is possibly due to that small networks

are limited by their capacity to effectively distill information from strong adversarial

examples, even the mixture distributions are well disentangled via auxiliary BNs.

Meanwhile, networks with enough capacity tend to favor stronger attackers. By

increasing attacker strength from PGD1 (ϵ=1) to PGD5 (ϵ=4), AdvProp boosts

EfficientNet-B7’s accuracy by 0.2%. This observation motivate our later ablation on

keeping increasing attackers strength to fully exploit the potential of large networks.

7.5.3 Comparisons to Adversarial Training

As shown in Figure 7.4 and Table 7.1, AdvProp improves models for better recognition

than the vanilla training baseline. These results contradict previous conclusions

[96], [100], [200] that the performance degradation is always observed if adversarial

examples are used for training. We hereby provide a set of ablations for explaining

this inconsistency. We choose the PGD5 (ϵ=4) as the default attacker to generate

adversarial examples during training.

Comparison Results. We compare AdvProp to traditional adversarial training [64],

and report evaluation results on ImageNet validation set in Figure 7.5. Compared to

123

76.2

78.7

79.7

81.3

82.9
83.8

84.5
85.1

+0.9

+0.5

+0.6

+0.5

+0.4

+0.5
+0.3

+0.1

75

77

79

81

83

85

B0 B1 B2 B3 B4 B5 B6 B7

Im
ag

eN
et

 T
op

-1
Ac

cu
ra

cy
(%

) Adversarial Training
AdvProp (ours)

Figure 7.5. AdvProp substantially outperforms adversarial training [64] on ImageNet,
especially for small models.

the traditional adversarial training, our method consistently achieves better accuracy

on all models. This result suggests that carefully handling BN statistics estimation is

important for training better models with adversarial examples.

From Figure 7.5, we note that the biggest improvement is obtained when using

EfficientNet-B0, i.e., our proposed AdvProp beats the traditional adversarial training

by 0.9%. While by using larger models, this improvement becomes smaller—it stays

at ∼0.5% until scaling to EfficientNet-B5, and then drops to 0.3% for EfficientNet-B6

and 0.1% for EfficientNet-B7, respectively.

Quantifying Domain Differences. One possible hypothesis for the observation

above is that more powerful networks have stronger ability to learn a unified internal

representations on the mixed distributions, therefore mitigate the issue of distribution

mismatch at normalization layers even without the help of auxiliary BNs. To support

this hypothesis, we take models trained with AdvProp, and compare the performance

difference between the settings that use either the main BNs or the auxiliary BNs.

As such resulted networks share all other layers except BNs, the corresponding

performance gap empirically captures the degree of distribution mismatch between

adversarial examples and clean images. We use ImageNet validation set for evaluation,

and summarize the results in Table 7.3.

124

B0 B1 B2 B3 B4 B5 B6 B7
BN 77.1 79.2 80.3 81.8 83.3 84.3 84.8 85.2

Auxiliary BN 73.7 75.9 77.0 78.6 80.5 82.1 82.7 83.3
△ +3.4 +3.3 +3.3 +3.2 +2.8 +2.2 +2.1 +1.9

Table 7.3. Performance comparison between settings that use either the main BNs and
auxiliary BNs on ImageNet. This performance difference captures the degree of distribution
mismatch between adversarial examples and clean images.

By training with larger networks, we observe this performance difference gets

smaller. Such gap for EfficientNet-B0 is 3.4%, but then is reduced to 1.9% for

EfficientNet-B7. It suggests that the internal representations of adversarial examples

and clean images learned on large networks are much more similar than that learned on

small networks. Therefore, with a strong enough network, it is possible to accurately

and effectively learn a mixture of distributions even without a careful handling at

normalization layers.

Why AdvProp? For small networks, our comparison shows that AdvProp substan-

tially outperforms the adversarial training baseline. We attribute this performance

improvement mainly to the successful disentangled learning via auxiliary BNs.

For larger networks, though the improvement is relatively small on ImageNet,

AdvProp consistently outperforms the adversarial training baseline by a large margin

on distorted ImageNet datasets. As shown in Table 7.4, AdvProp improves EfficientNet-

B7 by 3.1% on ImageNet-C, 4.3% on ImageNet-A and 1.5% on Stylized-ImageNet

over the adversarial training baseline.

Moreover, AdvProp enables large networks to perform better if trained with stronger

attackers. For example, by slightly increasing attacker strength from PGD5 (ϵ=4)

to PGD7 (ϵ=6), AdvProp further helps EfficientNet-B7 to achieve 85.3% top-1

accuracy on ImageNet. Conversely, applying such attacker to traditional adversarial

training decreases EfficientNet-B7’s accuracy to 85.0%, possibly due to a more severe

distribution mismatch between adversarial examples and clean images.

125

Model ImageNet-C [74] ImageNet-A [78] Stylized-ImageNet [59]
mCE ↓ Top-1 Acc. ↑ Top-1 Acc. ↑

B6 + Adv. Training 55.8 37.0 24.7
B6 + AdvProp (ours) 53.6 40.6 25.9
B7 + Adv. Training 56.0 40.4 25.1
B7 + AdvProp (ours) 52.9 44.7 26.6

Table 7.4. AdvProp demonstrates much stronger generalization ability on distorted
ImageNet datasets (e.g ., ImageNet-C) than the adversarial training baseline for large
models (e.g ., EfficientNet-B6 and EfficientNet-B7).

In summary, our proposed AdvProp enables networks to enjoy the benefits of

adversarial examples even with limited capacity. For networks with large enough

capacity, compared to adversarial training, AdvProp still demonstrates much stronger

generalization ability and better at exploiting model capacity for improving models’

recognition performance further.

Missing Pieces in Traditional Adversarial Training. In our reproduced adver-

sarial training, we note that it is already better than the vanilla training setting on

large EfficientNet models. For example, our adversarially trained EfficientNet-B7

achieves 85.1% top-1 accuracy on ImageNet, which beats the vanilla training baseline

by 0.6%. However, interestingly, previous works [96], [100] show adversarial training

always degrades model performance.

Compared to [96], [100], we make two changes in our re-implementation: (1) using

stronger networks; and (2) training with weaker attackers. For examples, previous

works use networks like Inception [194] or ResNet [72] for training, and set the

perturbation size ϵ=16; while we use much stronger EfficientNet for training, and

limit the perturbation size to a much smaller value ϵ=4. Intuitively, weaker attackers

push the distribution of adversarial examples less away from the distribution of clean

images, and larger networks are better at bridging domain differences. Both factors

mitigate the issue of distribution mismatch, thus making networks much easier to

learn valuable feature from both domains.

126

B0 B1 B2 B3 B4 B5 B6 B7
AdvProp 77.6 79.6 80.5 81.9 83.3 84.3 84.8 85.2
Fine-Grained AdvProp 77.9 79.8 80.7 82.0 83.5 84.4 84.8 85.2

Table 7.5. Fine-grained AdvProp substantially boosts model accuracy on ImageNet,
especially for small models. We perform fine-grained disentangled learning by keeping an
additional auxiliary BN for AutoAugment images.

7.5.4 Ablations

Fine-grained Disentangled Learning via Multiple Auxiliary BNs. Following

[197], our networks are trained with AutoAugment [37] by default, which include

operations like rotation and shearing. We hypothesize these operations (slightly) shift

the original data distribution and propose to add an extra auxiliary BN to disentangle

these augmented data further for fine-grained learning. In total, we keep one main

BN for clean images without AutoAugment, and two auxiliary BNs for clean images

with AutoAugment and adversarial examples, respectively.

We try PGD attackers with perturbation size ranging from 1 to 4, and report

the best result on ImageNet in Table 7.5. Compared to the default version, this fine

grained AdvProp improves performance further. It helps EfficientNet-B0 to achieve

77.9% accuracy with just 5.3M parameters, which is the state-of-the-art performance

for mobile networks. As a comparison, MobileNetv3 has 5.4M parameters with 75.2%

accuracy [82]. These results encourage the future investigation on more fine-grained

disentangled learning in general, not just for adversarial training.

Comparison to AutoAugment. Training with adversarial examples is a form of

data augmentation. We choose the standard Inception-style pre-processing [194] as

baseline, and compare the benefits of additionally applying AutoAugment or AdvProp.

We train networks with PGD5 (ϵ=4) and evaluate performance on ImageNet.

Results are summarized in Table 7.6. For small models, AutoAugment is slightly

better than AdvProp although we argue this gap can be bridged by adjusting the

127

B0 B1 B2 B3 B4 B5 B6 B7
Inception Pre-process [194] 76.8 78.8 79.8 81.0 82.6 83.2 83.7 84.0
+ AutoAugment [37] +0.5 +0.4 +0.5 +0.7 +0.4 +0.5 +0.5 +0.5
+ AdvProp (ours) +0.3 +0.3 +0.2 +0.4 +0.3 +0.8 +0.9 +0.9
+ Both (ours) +0.3 +0.4 +0.5 +0.8 +0.7 +1.1 +1.1 +1.2

Table 7.6. Both AutoAugment and AdvProp improves model performance over the
Inception-style pre-processing baseline on ImageNet. Large Models generally perform
better with AdvProp than AutoAugment. Training with a combination of both is better
than using AdvProp alone on all networks.

attacker strength. For large models, AdvProp significantly outperforms AutoAugment.

Note that training with both strategies is better than using AdvProp alone.

Attackers Other Than PGD. We hereby study the effects of applying different

attackers in AdvProp on model performance. Specifically, we try two different modifi-

cations on PGD: (1) we no longer limit the perturbation size to be within the ϵ-ball,

and name this attacker to Gradient Descent (GD) as it removes the projection step in

PGD; or (2) we skip the random noise initialization step in PGD, turn it to I-FGSM

[100]. Other attack hyper-parameters are unchanged: the maximum perturbation size

ϵ=4 (if applicable), number of attack iteration n=5 and attack step size α=1.0.

For simplicity, we only experiment with EfficientNet-B3, EfficientNet-B5 and

EfficientNet-B7, and report the ImageNet performance in Table 7.7. We observe

that all attackers substantially improve model performance over the vanilla training

baseline. This result suggests that our AdvProp is not designed for a specific attacker

(e.g., PGD), but a general mechanism for improving image recognition models with

different adversarial attacker.

B3 B5 B7
Vanilla Training 81.7 83.7 84.5
PGD [128] 81.8 84.3 85.2
I-FGSM [100] 81.9 84.3 85.2
GD 81.7 84.3 85.3

Table 7.7. ImageNet performance when trained with different attackers. With AdvProp,
all attackers successfully improve model performance over the vanilla training baseline.

128

ResNet-50 ResNet-101 ResNet-152 ResNet-200
Vanilla Training 76.7 78.3 79.0 79.3
Adversarial Training -3.2 -1.8 -2.0 -1.4
AdvProp (ours) +0.4 +0.6 +0.8 +0.8

Table 7.8. Performance comparison among vanilla training, adversarial training and
AdvProp on ImageNet. AdvProp reports the best result on all ResNet models.

ResNet Results. We additionally experiment with ResNet. We compare AdvProp

against two baselines: vanilla training and adversarial training. We apply PGD5 (ϵ=4)

to generate adversarial examples, and follow the settings in [72] to train all networks.

We report model performance on ImageNet in Table 7.8. Compared to vanilla

training, adversarial training always degrades model performance while AdvProp

consistently leads to better accuracy on all ResNet models. Take ResNet-152 for

example, adversarial training decreases the baseline performance by 2.0%, but our

AdvProp further boosts the baseline performance by 0.8%.

In Sec. 7.5.3, we show that adversarial training can improve performance if large

EfficientNets are used for training. However, this phenomenon is not observed on

ResNet, e.g., adversarial training still leads to inferior accuracy even trained with the

large ResNet-200. It may suggest that architecture design also plays an important

role when training with adversarial example, and we leave it as a future work.

Pushing The Envelope with a Larger Model. Previous results suggest AdvProp

performs better with larger networks. To push the envelope, we train a larger network,

EfficientNet-B8, by scaling up EfficientNet-B7 further according to the compound

scaling rule in [197].

Our AdvProp improves the accuracy of EfficientNet-B8 from 84.8% to 85.5%,

achieving a new state-of-the-art accuracy on ImageNet without using extra data. This

result even surpasses the best model reported in [129], which is pretrained on 3.5B

extra Instagram images (∼3000× more than ImageNet) and requires ∼9.4× more

parameters (829M vs. 88M) than our EfficientNet-B8.

129

7.6 Summary

Previous works commonly view adversarial examples as a threat to deep networks, and

suggest training with adversarial examples lead to accuracy drop on clean images. Here

we offer a different perspective: to use adversarial examples for improving accuracy

of deep networks. As adversarial examples have different underlying distributions to

normal examples, we propose to use an auxiliary batch norm for disentangled learning

by processing adversarial examples and clean images separately at normalization

layers. Our method, AdvProp, significantly improves accuracy of all networks in our

experiments. Our best model reports the state-of-the-art 85.5% top-1 accuracy on

ImageNet without any extra data.

130

Chapter 8

Discussion and Conclusion

Deep network are powerful for visual recognition. But meanwhile, many works suggest

current deep networks cannot generalize as well as the human perception, e.g., they

are sensitive to small input changes, viewpoint variation or occlusion. In this thesis,

we focus on adversarial examples, and explore how they can fool deep networks and

how deep networks can be robust against them. We additionally demonstrate that

adversarial examples can in turn efficiently regularize the training of deep networks for

boosting the generalization ability. Nonetheless, it remains an open challenge for deep

networks to be as robust/generalizable as the human perception. Towards the goal

of building human-level computer vision systems, we plan to explore the following

directions in the future.

Towards trustworthy recognition models. The vulnerability of deep networks

to adversarial examples raises profound security concerns. Principally, we can build a

robust model from the following two aspects:

• Robust learning algorithm. Currently, adversarial training stands as the one

of the most effective ways for defending against adversarial attacks. But it

suffers from several shortcomings, e.g., adversarial training is computationally

expensive, and such trained models exhibit a performance tradeoff between

clean image accuracy and adversarial robustness. It is possible to improve this

131

learning paradigm by designing loss objective with adaptive regularization terms,

reducing the cost of generating adversarial examples, etc. Besides, as suggested

in [229], we can explore the possible connections between domain adaption

and adversarial robustness, to build an unified learning framework for gaining

adversarial robustness.

• Robust architectures design. We also seek to build novel neural architectures

that have “innate” adversarial robustness. Following [225], [231], we can explore

other architectural elements to smooth feature representations for improving

model robustness. Meanwhile, as demonstrated in [22], [70], it is promising to

apply neural architecture search to discover the design principle of robust neural

architecture topologies. Besides, we will also try to theoretically understand how

and why robust neural architectures can gain adversarial robustness for “free”,

which plausibly break the no free lunch theorem in adversarial robustness [201].

Besides focusing on the general methodologies for increasing model robustness, we

will also attend to a specific application setting—defending against physical adversarial

examples. Physical adversarial examples bring safety and reliability concerns to the

deep networks based cyber-physical systems, e.g., autonomous vehicles. These concerns

are further aggravated by the fact that current approaches [3], [30], [105], [131], [217],

[220] are still limited at handling physical adversarial examples. By noticing physical

adversarial attack can be alternatively viewed as a combination of the perturbation

attack and the occlusion attack, we can explore the idea of equipping models with

both robust feature representations (for adversarial noise) as well as the ability to

represent objects via local visual cues in a flexible and adaptive manner (for occlusion).

This architecture design would be easily scaled/extended to handle other real-world

challenging scenarios (e.g., viewpoint variation), as richer representations (e.g., 2D or

3D geometry) can be encoded as visual cues to obtain more advanced models.

132

Exploring the benefits of learning with “hard” data. Previous works generally

treat adversarial examples as a threat to deep networks. Nonetheless, as demonstrated

in [224], adversarial examples can also be beneficial, i.e., they significantly boosts

the generalization of deep networks. Another showcase is provided in [114], where

cue conflict images [59] are utilized to help deep networks learn better shape-texture

representations. Both works suggest that it is promising to explore whether learning

with “hard” data, which traditionally is viewed as the blind spot of deep networks,

can serve as a general principle for benefiting the representation learning of deep

networks. On the one hand, learning with “hard” data usually helps deep networks

learn valuable features that cannot be obtained from traditional data augmentation

methods, e.g., adversarial examples can help models learn robust features in a much

more effective and efficient way than other data augmentation methods. On the other

hand, augmenting training set with “hard” data sometimes is a more general way to

perform data augmentation. For example, flipping operation is only applicable to

image-based data, while adversarial examples almost exist for every tasks (including

vision, NLP, reinforcement learning) and can be used to augment data universally.

Another direction worth exploring is that we can use “hard” data to help the model

interpretability. Prior studies [90], [201] show that adversarial examples can help deep

network learn more human alignable feature representations. This conclusion may be

extendable to the setting of learning with other “hard” data.

Summary Studying robustness is an important research topic for the computer vision

community, not only for the purpose of building a trustworthy recognition system, but

also for deeper understandings of our “black-box” models. This thesis has summarized

a few interesting aspects and promising directions to go, which we hope will shed

lights on future research.

133

References

[1] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square attack: A
query-efficient black-box adversarial attack via random search,” in ECCV, 2020.

[2] A. Arnab, O. Miksik, and P. H. Torr, “On the robustness of semantic segmentation
models to adversarial attacks,” in CVPR, 2018.

[3] M. Arvinte, A. Tewfik, and S. Vishwanath, “Detecting patch adversarial attacks with
image residuals,” arXiv preprint arXiv:2002.12504, 2020.

[4] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples,” in ICML, 2018.

[5] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial
examples,” in ICML, 2018.

[6] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv:1607.06450,
2016.

[7] Y. Balaji, T. Goldstein, and J. Hoffman, “Instance adaptive adversarial training:
Improved accuracy tradeoffs in neural nets,” arXiv preprint arXiv:1910.08051, 2019.

[8] S. Baluja and I. Fischer, “Learning to attack: Adversarial transformation networks,”
in AAAI, 2018.

[9] J. T. Barron, “Continuously differentiable exponential linear units,” arXiv preprint
arXiv:1704.07483, 2017.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Computer vision and image understanding, 2008.

[11] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing robustness of
machine learning systems via data transformations,” in CISS, 2018.

[12] A. N. Bhagoji, W. He, B. Li, and D. Song, “Practical black-box attacks on deep
neural networks using efficient query mechanisms,” in ECCV, 2018.

[13] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli, “Evasion attacks against machine learning at test time,” in ECML-PKDD,
2013.

[14] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models,” in ICLR, 2018.

[15] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity
natural image synthesis,” in ICLR, 2018.

134

[16] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,”
in CVPR, 2005.

[17] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding: One hot
way to resist adversarial examples,” in ICLR, 2018.

[18] J. Canny, “A computational approach to edge detection,” TPAMI, 1986.
[19] X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural networks via

region-based classification,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017.

[20] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in SP, 2017.

[21] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang, “Unlabeled
data improves adversarial robustness,” in NeurIPS, 2019.

[22] H. Chen, B. Zhang, S. Xue, X. Gong, H. Liu, R. Ji, and D. Doermann, “Anti-bandit
neural architecture search for model defense,” arXiv preprint arXiv:2008.00698, 2020.

[23] H. Chen, H. Zhang, P.-Y. Chen, J. Yi, and C.-J. Hsieh, “Attacking visual language
grounding with adversarial examples: A case study on neural image captioning,” in
ACL, 2018.

[24] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” TPAMI, 2017.

[25] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training
substitute models,” in ACM Workshop on Artificial Intelligence and Security, 2017.

[26] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter: Robust
physical adversarial attack on faster r-cnn object detector,” in ECML-PKDD, 2018.

[27] M. Cheng, T. Le, P.-Y. Chen, H. Zhang, J. Yi, and C.-J. Hsieh, “Query-efficient
hard-label black-box attack: An optimization-based approach,” in ICLR, 2018.

[28] M. Cheng, Q. Lei, P.-Y. Chen, I. Dhillon, and C.-J. Hsieh, “Cat: Customized adver-
sarial training for improved robustness,” arXiv preprint arXiv:2002.06789, 2020.

[29] M. Cheng, J. Yi, P.-Y. Chen, H. Zhang, and C.-J. Hsieh, “Seq2sick: Evaluating the
robustness of sequence-to-sequence models with adversarial examples,” in AAAI,
2020.

[30] P.-Y. Chiang*, R. Ni*, A. Abdelkader, C. Zhu, C. Studor, and T. Goldstein, “Certified
defenses for adversarial patches,” in ICLR, 2020.

[31] S. Chintala, E. Denton, M. Arjovsky, and M. Mathieu, How to train a gan? tips and
tricks to make gans work, https://github.com/soumith/ganhacks, 2016.

[32] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep structured
visual and speech recognition models with adversarial examples,” in NIPS, 2017.

[33] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (ELUs),” in ICLR, 2016.

135

https://github.com/soumith/ganhacks

[34] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S.
Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,”
in CVPR, 2016.

[35] C. Cosgrove and A. Yuille, “Adversarial examples for edge detection: They exist, and
they transfer,” in WACV, 2020.

[36] F. Croce, M. Andriushchenko, N. D. Singh, N. Flammarion, and M. Hein, “Sparse-rs:
A versatile framework for query-efficient sparse black-box adversarial attacks,” arXiv
preprint arXiv:2006.12834, 2020.

[37] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment:
Learning augmentation policies from data,” in CVPR, 2019.

[38] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical data
augmentation with no separate search,” in CVPR, 2020.

[39] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully
convolutional networks,” in NIPS, 2016.

[40] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, 2005.

[41] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, et al., “Adversarial classification,” in
SIGKDD, 2004.

[42] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural
networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[43] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi, A. Khanna,
and A. Anandkumar, “Stochastic activation pruning for robust adversarial defense,”
in ICLR, 2018.

[44] G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang, “Max-margin adversarial (mma)
training: Direct input space margin maximization through adversarial training,” in
ICLR, 2020.

[45] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition,” in
ICML, 2014.

[46] Y. Dong, F. Liao, T. Pang, H. Su, X. Hu, J. Li, and J. Zhu, “Boosting adversarial
attacks with momentum,” in CVPR, 2018.

[47] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial
examples by translation-invariant attacks,” in CVPR, 2019.

[48] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,”
in SIGGRAPH, 2001.

[49] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning,” Neural Networks, 2018.

[50] L. Engstrom, A. Ilyas, and A. Athalye, “Evaluating and understanding the robustness
of adversarial logit pairing,” in NeurIPS Workshop on SECML, 2018.

[51] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
Pascal Visual Object Classes (VOC) Challenge,” IJCV, 2010.

136

[52] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer, A. Prakash,
T. Kohno, and D. Song, “Physical adversarial examples for object detectors,” in
USENIX WOOT, 2018.

[53] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in CVPR, 2018.

[54] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial
samples from artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[55] V. Fischer, M. C. Kumar, J. H. Metzen, and T. Brox, “Adversarial examples for
semantic image segmentation,” in ICLR Workshop, 2017.

[56] A. Galloway, A. Golubeva, T. Tanay, M. Moussa, and G. W. Taylor, “Batch nor-
malization is a cause of adversarial vulnerability,” arXiv preprint arXiv:1905.02161,
2019.

[57] R. Gao, T. Cai, H. Li, L. Wang, C.-J. Hsieh, and J. D. Lee, “Convergence of adversarial
training in overparametrized networks,” in NeurIPS, 2019.

[58] R. Geirhos, J. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and
F. A. Wichmann, “Shortcut learning in deep neural networks,” arXiv preprint
arXiv:2004.07780, 2020.

[59] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel,
“Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness,” in ICLR, 2018.

[60] R. Girshick, “Fast R-CNN,” in ICCV, 2015.
[61] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in CVPR, 2014.
[62] Z. Gong, W. Wang, and W.-S. Ku, “Adversarial and clean data are not twins,” arXiv

preprint arXiv:1704.04960, 2017.
[63] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.
[64] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” in ICLR, 2015.
[65] S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli, “Uncovering the limits of

adversarial training against norm-bounded adversarial examples,” arXiv preprint
arXiv:2010.03593, 2020.

[66] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He, “Accurate, large minibatch SGD: Training ImageNet in 1 hour,”
arXiv:1706.02677, 2017.

[67] C. Guo, J. S. Frank, and K. Q. Weinberger, “Low frequency adversarial perturbation,”
in UAI, 2018.

[68] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger, “Simple black-box
adversarial attacks,” in ICML, 2019.

[69] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adversarial images
using input transformations,” in ICLR, 2018.

137

[70] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin, “When nas meets robustness: In search
of robust architectures against adversarial attacks,” in CVPR, 2020.

[71] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung,
“Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit,”
Nature, 2000.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[73] J. Hendrik Metzen, M. Chaithanya Kumar, T. Brox, and V. Fischer, “Universal
adversarial perturbations against semantic image segmentation,” in ICCV, 2017.

[74] D. Hendrycks and T. G. Dietterich, “Benchmarking neural network robustness to
common corruptions and surface variations,” ICLR, 2019.

[75] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint
arXiv:1606.08415, 2016.

[76] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve model
robustness and uncertainty,” ICML, 2019.

[77] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self-supervised learning
can improve model robustness and uncertainty,” in Advances in Neural Information
Processing Systems, 2019.

[78] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural adversarial
examples,” arXiv preprint arXiv:1907.07174, 2019.

[79] C.-H. Ho, B. Leung, E. Sandstrom, Y. Chang, and N. Vasconcelos, “Catastrophic
child’s play: Easy to perform, hard to defend adversarial attacks,” in CVPR, 2019.

[80] C.-H. Ho and N. Vasconcelos, “Contrastive learning with adversarial examples,” in
NeurIPS, 2020.

[81] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: Closing the
generalization gap in large batch training of neural networks,” in NIPS, 2017.

[82] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in ICCV, 2019.

[83] B. Huang, Y. Wang, and W. Wang, “Model-agnostic adversarial detection by random
perturbations,” in IJCAI, 2019.

[84] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in CVPR, 2017.

[85] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with
stochastic depth,” in ECCV, 2016.

[86] L. Huang, C. Gao, Y. Zhou, C. Xie, A. Yuille, C. Zou, and N. Liu, “Universal physical
camouflage attacks on object detectors,” in CVPR, 2020.

[87] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Adversarial
machine learning,” in ACM Workshop on Security and Artificial Intelligence, 2011.

[88] Q. Huang, I. Katsman, H. He, Z. Gu, S. Belongie, and S.-N. Lim, “Enhancing
adversarial example transferability with an intermediate level attack,” in ICCV, 2019.

138

[89] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive
instance normalization,” in ICCV, 2017.

[90] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adversarial
examples are not bugs, they are features,” in NeurIPS, 2019.

[91] N. Inkawhich, K. J. Liang, B. Wang, M. Inkawhich, L. Carin, and Y. Chen, “Per-
turbing across the feature hierarchy to improve standard and strict blackbox attack
transferability,” arXiv preprint arXiv:2004.14861, 2020.

[92] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in ICML, 2015.

[93] M. Javaheripi, M. Samragh, B. D. Rouhani, T. Javidi, and F. Koushanfar, “Curtail:
Characterizing and thwarting adversarial deep learning,” TDSC, 2020.

[94] Z. Jiang, T. Chen, T. Chen, and Z. Wang, “Robust pre-training by adversarial
contrastive learning,” in NeurIPS, 2020.

[95] C. Jin and M. Rinard, “Manifold regularization for adversarial robustness,” arXiv
preprint arXiv:2003.04286, 2020.

[96] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pairing,” arXiv preprint
arXiv:1803.06373, 2018.

[97] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” IJCV,
1988.

[98] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby,
“Large scale learning of general visual representations for transfer,” arXiv preprint
arXiv:1912.11370, 2019.

[99] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep
convolutional neural networks,” in NIPS, 2012.

[100] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
in ICLR, 2017.

[101] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in ICLR Workshop, 2017.

[102] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang, T. Pang, J. Zhu,
X. Hu, C. Xie, et al., “Adversarial attacks and defences competition,” in The NIPS’17
Competition: Building Intelligent Systems, Springer, 2018.

[103] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
computation, 1989.

[104] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart augmentation learning an optimal
data augmentation strategy,” IEEE Access, 2017.

[105] A. Levine and S. Feizi, “(de) randomized smoothing for certifiable defense against
patch attacks,” arXiv preprint arXiv:2002.10733, 2020.

[106] Q. Li, Y. Guo, and H. Chen, “Yet another intermediate-level attack,” in ECCV, 2020.
[107] X. Li and F. Li, “Adversarial examples detection in deep networks with convolutional

filter statistics,” in ICCV, 2017.

139

[108] Y. Li, E. X. Fang, H. Xu, and T. Zhao, “Inductive bias of gradient descent based
adversarial training on separable data,” in ICLR, 2020.

[109] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “Nattack: Learning the distributions
of adversarial examples for an improved black-box attack on deep neural networks,”
in ICML, 2019.

[110] Y. Li, N. Wang, J. Liu, and X. Hou, “Demystifying neural style transfer,” arXiv
preprint arXiv:1701.01036, 2017.

[111] Y. Li, L. Xie, Y. Zhang, R. Zhang, Y. Wang, and Q. Tian, “Defending adversarial
attacks by correcting logits,” arXiv preprint arXiv:1906.10973, 2019.

[112] Y. Li, S. Bai, C. Xie, Z. Liao, X. Shen, and A. Yuille, “Regional homogeneity: Towards
learning transferable universal adversarial perturbations against defenses,” in ECCV,
2020.

[113] Y. Li, S. Bai, Y. Zhou, C. Xie, Z. Zhang, and A. Yuille, “Learning transferable
adversarial examples via ghost networks,” in AAAI, 2020.

[114] Y. Li, Q. Yu, M. Tan, J. Mei, P. Tang, W. Shen, A. Yuille, and C. Xie, “Shape-texture
debiased neural network training,” arXiv, 2020.

[115] F. Liao, M. Liang, Y. Dong, and T. Pang, “Defense against adversarial attacks using
high-level representation guided denoiser,” in CVPR, 2018.

[116] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast autoaugment,” in NeurIPS, 2019.
[117] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” in CVPR, 2017.
[118] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,

J. Huang, and K. Murphy, “Progressive neural architecture search,” in ECCV, 2018.
[119] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural networks via

random self-ensemble,” in ECCV, 2018.
[120] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples

and black-box attacks,” in ICLR, 2017.
[121] V. S. Lokhande, S. Tasneeyapant, A. Venkatesh, S. N. Ravi, and V. Singh, “Generat-

ing accurate pseudo-labels in semi-supervised learning and avoiding overconfident
predictions via hermite polynomial activations,” in CVPR, 2020.

[122] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in CVPR, 2015.

[123] R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D. Cubuk, “Improving robustness
without sacrificing accuracy with patch gaussian augmentation,” arXiv preprint
arXiv:1906.02611, 2019.

[124] Y. Lou, X. Boix, G. Roig, T. Poggio, and Q. Zhao, “Foveation-based mechanisms
alleviate adversarial examples,” Center for Brains, Minds and Machines (CBMM),
arXiv, Tech. Rep., 2016.

[125] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” IJCV, 2004.
[126] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial

examples robustly,” in ICCV, 2017.

140

[127] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song,
M. E. Houle, and J. Bailey, “Characterizing adversarial subspaces using local intrinsic
dimensionality,” in ICLR, 2018.

[128] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” in ICLR, 2018.

[129] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe,
and L. van der Maaten, “Exploring the limits of weakly supervised pretraining,” in
ECCV, 2018.

[130] X. Mao, Y. Chen, Y. Li, Y. He, and H. Xue, “Gap++: Learning to generate target-
conditioned adversarial examples,” arXiv preprint arXiv:2006.05097, 2020.

[131] M. McCoyd, W. Park, S. Chen, N. Shah, R. Roggenkemper, M. Hwang, J. X. Liu,
and D. Wagner, “Minority reports defense: Defending against adversarial patches,”
arXiv preprint arXiv:2004.13799, 2020.

[132] D. Meng and H. Chen, “Magnet: A two-pronged defense against adversarial examples,”
in CCS, 2017.

[133] A. Merchant, B. Zoph, and E. D. Cubuk, “Does data augmentation benefit from split
batchnorms,” arXiv preprint arXiv:2010.07810, 2020.

[134] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations,” in ICLR, 2018.

[135] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker, M.
Bethge, and W. Brendel, “Benchmarking robustness in object detection: Autonomous
driving when winter is coming,” arXiv preprint arXiv:1907.07484, 2019.

[136] D. Miller, Y. Wang, and G. Kesidis, “When not to classify: Anomaly detection of
attacks (ada) on dnn classifiers at test time,” Neural computation, 2019.

[137] Y. Min, L. Chen, and A. Karbasi, “The curious case of adversarially robust mod-
els: More data can help, double descend, or hurt generalization,” arXiv preprint
arXiv:2002.11080, 2020.

[138] D. Misra, “Mish: A self regularized non-monotonic neural activation function,” arXiv
preprint arXiv:1908.08681, 2019.

[139] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training: A
regularization method for supervised and semi-supervised learning,” TPAMI, 2018.

[140] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in CVPR, 2017.

[141] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and accurate
method to fool deep neural networks,” in CVPR, 2016.

[142] M. Mosbach, M. Andriushchenko, T. Trost, M. Hein, and D. Klakow, “Logit pairing
methods can fool gradient-based attacks,” arXiv preprint arXiv:1810.12042, 2018.

[143] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in ICML, 2010.

[144] A. Najafi, S.-i. Maeda, M. Koyama, and T. Miyato, “Robustness to adversarial
perturbations in learning from incomplete data,” in NeurIPS, 2019.

141

[145] P. Nakkiran, “Adversarial robustness may be at odds with simplicity,” arXiv preprint
arXiv:1901.00532, 2019.

[146] M. M. Naseer, S. H. Khan, M. H. Khan, F. S. Khan, and F. Porikli, “Cross-domain
transferability of adversarial perturbations,” in NeurIPS, 2019.

[147] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images,” in CVPR, 2015.

[148] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transac-
tions on Systems, Man, and Cybernetics, 1979.

[149] T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection of adversarial
examples,” in NeurIPS, 2018.

[150] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving adversarial robustness via
promoting ensemble diversity,” in ICML, 2019.

[151] T. Pang, K. Xu, and J. Zhu, “Mixup inference: Better exploiting mixup to defend
adversarial attacks,” in ICLR, 2020.

[152] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu, “Bag of tricks for adversarial training,”
arXiv preprint arXiv:2010.00467, 2020.

[153] T. Pang, X. Yang, Y. Dong, K. Xu, H. Su, and J. Zhu, “Boosting adversarial training
with hypersphere embedding,” in NeurIPS, 2020.

[154] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie,
Y. Sharma, T. Brown, A. Roy, et al., “Technical report on the cleverhans v2. 1.0
adversarial examples library,” arXiv preprint arXiv:1610.00768, 2016.

[155] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in ASIACCS, 2017.

[156] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in SP, 2016.

[157] O. Poursaeed, T. Jiang, H. Yang, S. Belongie, and S.-N. Lim, “Fine-grained synthesis
of unrestricted adversarial examples,” arXiv preprint arXiv:1911.09058, 2019.

[158] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie, “Generative adversarial pertur-
bations,” in CVPR, 2017.

[159] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer, “Deflecting adversarial
attacks with pixel deflection,” in CVPR, 2018.

[160] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-training for semi-
supervised image recognition,” in ECCV, 2018.

[161] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi, S. De, R.
Stanforth, and P. Kohli, “Adversarial robustness through local linearization,” in
NeurIPS, 2019.

[162] H. Qiu, C. Xiao, L. Yang, X. Yan, H. Lee, and B. Li, “Semanticadv: Generating
adversarial examples via attribute-conditional image editing,” in ECCV, 2020.

[163] A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang, “Understanding and
mitigating the tradeoff between robustness and accuracy,” in ICML, 2020.

142

[164] A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P. Liang, “Adversarial training
can hurt generalization,” arXiv preprint arXiv:1906.06032, 2019.

[165] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” in
ICLR Workshop, 2018.

[166] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-shelf:
An astounding baseline for recogniton,” in CVPR Workshop on DeepVision, 2014.

[167] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search,” in AAAI, 2019.

[168] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” TPAMI, 2017.

[169] L. Rice, E. Wong, and J. Z. Kolter, “Overfitting in adversarially robust deep learning,”
arXiv preprint arXiv:2002.11569, 2020.

[170] A. Rosenfeld, R. Zemel, and J. K. Tsotsos, “The elephant in the room,” arXiv preprint
arXiv:1808.03305, 2018.

[171] A. Rozsa and T. E. Boult, “Improved adversarial robustness by reducing open space
risk via tent activations,” arXiv preprint arXiv:1908.02435, 2019.

[172] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D: nonlinear phenomena, 1992.

[173] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” IJCV, 2015.

[174] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protecting classifiers
against adversarial attacks using generative models,” in ICLR, 2018.

[175] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry, “Adversarially robust
generalization requires more data,” in NeurIPS, 2018.

[176] L. Schott, J. Rauber, M. Bethge, and W. Brendel, “Towards the first adversarially
robust neural network model on mnist,” in ICLR, 2019.

[177] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G.
Taylor, and T. Goldstein, “Adversarial training for free!” In NeurIPS, 2019.

[178] G. Shamir, D. Lin, and L. Coviello, “Smooth activations and reproducibility in deep
networks,” arXiv preprint arXiv:2010.09931, 2020.

[179] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, “Deepcontour: A deep convo-
lutional feature learned by positive-sharing loss for contour detection,” in CVPR,
2015.

[180] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detectors
with online hard example mining,” in CVPR, 2016.

[181] M. Shu, Z. Wu, M. Goldblum, and T. Goldstein, “Preparing for the worst: Mak-
ing networks less brittle with adversarial batch normalization,” arXiv preprint
arXiv:2009.08965, 2020.

[182] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer,
“Discriminative learning of deep convolutional feature point descriptors,” in ICCV,
2015.

143

[183] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in ICLR, 2015.

[184] A. Sinha, H. Namkoong, and J. Duchi, “Certifying some distributional robustness
with principled adversarial training,” in ICLR, 2018.

[185] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal, “Darts: Deceiving
autonomous cars with toxic signs,” arXiv preprint arXiv:1802.06430, 2018.

[186] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples,” in ICLR,
2018.

[187] Y. Song, R. Shu, N. Kushman, and S. Ermon, “Constructing unrestricted adversarial
examples with generative models,” in NeurIPS, 2018.

[188] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” JMLR, 2014.

[189] D. Stutz, M. Hein, and B. Schiele, “Disentangling adversarial robustness and general-
ization,” in CVPR, 2019.

[190] D. Stutz, M. Hein, and B. Schiele, “Confidence-calibrated adversarial training: Gen-
eralizing to unseen attacks,” in ICML, 2020.

[191] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao, “Is robustness the cost of
accuracy?–a comprehensive study on the robustness of 18 deep image classification
models,” in ECCV, 2018.

[192] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness
of data in deep learning era,” in ICCV, 2017.

[193] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” in ICLR Workshop, 2016.

[194] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR, 2015.

[195] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in CVPR, 2016.

[196] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.

[197] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in ICML, 2019.

[198] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance cameras:
Adversarial patches to attack person detection,” in CVPR Workshop on CV-COPS,
2019.

[199] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in ICCV,
1998.

[200] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel, “Ensemble adver-
sarial training: Attacks and defenses,” in ICLR, 2018.

[201] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may
be at odds with accuracy,” in ICLR, 2019.

144

[202] J. Uesato, J.-B. Alayrac, P.-S. Huang, A. Fawzi, R. Stanforth, and P. Kohli, “Are
labels required for improving adversarial robustness?” In NeurIPS, 2019.

[203] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing
ingredient for fast stylization,” arXiv:1607.08022, 2016.

[204] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[205] A. Wald, “Statistical decision functions which minimize the maximum risk,” Annals
of Mathematics, 1945.

[206] H. Wang, T. Chen, S. Gui, T.-K. Hu, J. Liu, and Z. Wang, “Once-for-all adversarial
training: In-situ tradeoff between robustness and accuracy for free,” in NeurIPS,
2020.

[207] J. Wang, C. Xie, Z. Zhang, J. Zhu, L. Xie, and A. Yuille, “Detecting semantic parts
on partially occluded objects,” in BMVC, 2017.

[208] J. Wang and H. Zhang, “Bilateral adversarial training: Towards fast training of more
robust models against adversarial attacks,” in ICCV, 2019.

[209] S. Wang, X. Wang, P. Zhao, W. Wen, D. Kaeli, P. Chin, and X. Lin, “Defensive
dropout for hardening deep neural networks under adversarial attacks,” in ICCAD,
2018.

[210] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in CVPR,
2018.

[211] X. Wang, J. Ren, S. Lin, X. Zhu, Y. Wang, and Q. Zhang, “A unified approach to in-
terpreting and boosting adversarial transferability,” arXiv preprint arXiv:2010.04055,
2020.

[212] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu, “On the convergence and
robustness of adversarial training,” in ICML, 2019.

[213] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “Improving adversarial
robustness requires revisiting misclassified examples,” in ICLR, 2020.

[214] X. Wei, J. Zhu, S. Yuan, and H. Su, “Sparse adversarial perturbations for videos,” in
AAAI, 2019.

[215] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial
training,” in ICLR, 2020.

[216] D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma, “Skip connections matter: On the
transferability of adversarial examples generated with resnets,” in ICLR, 2019.

[217] T. Wu, L. Tong, and Y. Vorobeychik, “Defending against physically realizable attacks
on image classification,” in ICLR, 2020.

[218] Y. Wu et al., Tensorpack, https://github.com/tensorpack/, 2016.
[219] Y. Wu and K. He, “Group normalization,” in ECCV, 2018.
[220] C. Xiang, A. N. Bhagoji, V. Sehwag, and P. Mittal, “Patchguard: Provable defense

against adversarial patches using masks on small receptive fields,” arXiv preprint
arXiv:2005.10884, 2020.

145

https://github.com/tensorpack/

[221] C. Xiao and C. Zheng, “One man’s trash is another man’s treasure: Resisting
adversarial examples by adversarial examples,” in CVPR, 2020.

[222] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial
examples with adversarial networks,” in IJCAI, 2018.

[223] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed
adversarial examples,” in ICLR, 2018.

[224] C. Xie, M. Tan, B. Gong, J. Wang, A. Yuille, and Q. V. Le, “Adversarial examples
improve image recognition,” in CVPR, 2020.

[225] C. Xie, M. Tan, B. Gong, A. Yuille, and Q. V. Le, “Smooth adversarial training,”
arXiv preprint arXiv:2006.14536, 2020.

[226] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial effects
through randomization,” in ICLR, 2018.

[227] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial Examples
for Semantic Segmentation and Object Detection,” in ICCV, 2017.

[228] C. Xie, Y. Wu, L. van der Maaten, A. Yuille, and K. He, “Feature denoising for
improving adversarial robustness,” in CVPR, 2019.

[229] C. Xie and A. Yuille, “Intriguing properties of adversarial training at scale,” in ICLR,
2020.

[230] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille, “Improving
transferability of adversarial examples with input diversity,” in CVPR, 2019.

[231] Q. Xie, E. Hovy, M.-T. Luong, and Q. Le, “Self-training with noisy student improves
imagenet classification,” in CVPR, 2020.

[232] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in CVPR, 2017.

[233] S. Xie and Z. Tu, “Holistically-nested edge detection,” in ICCV, 2015.
[234] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in

deep neural networks,” in NDSS, 2018.
[235] C. Yang, A. Kortylewski, C. Xie, Y. Cao, and A. Yuille, “Patchattack: A black-box

texture-based attack with reinforcement learning,” in ECCV, 2020.
[236] D. Yin, R. G. Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer, “A fourier perspective

on model robustness in computer vision,” in NeurIPS, 2019.
[237] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural

networks,” in ECCV, 2014.
[238] R. Zhai, T. Cai, D. He, C. Dan, K. He, J. Hopcroft, and L. Wang, “Adversarially robust

generalization just requires more unlabeled data,” arXiv preprint arXiv:1906.00555,
2019.

[239] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only propagate once:
Accelerating adversarial training via maximal principle,” 2019.

[240] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He, J. Mueller, R.
Manmatha, M. Li, and A. Smola, “Resnest: Split-attention networks,” arXiv preprint
arXiv:2004.08955, 2020.

146

[241] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, “Theoretically
principled trade-off between robustness and accuracy,” in ICML, 2019.

[242] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical
risk minimization,” in ICLR, 2018.

[243] T. Zhang and Z. Zhu, “Interpreting adversarially trained convolutional neural net-
works,” in ICML, 2019.

[244] X. Zhang, Q. Wang, J. Zhang, and Z. Zhong, “Adversarial autoaugment,” in ICLR,
2020.

[245] Y. Zhang, H. Foroosh, P. David, and B. Gong, “Camou: Learning physical vehicle
camouflages to adversarially attack detectors in the wild,” in ICLR, 2018.

[246] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, and A. L. Yuille, “Single-shot object
detection with enriched semantics,” in CVPR, 2018.

[247] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. Torr, “Conditional random fields as recurrent neural networks,” in ICCV,
2015.

[248] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan, and Y. Yang, “Transferable
adversarial perturbations,” in ECCV, 2018.

[249] B. Zoph, E. D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, and Q. V. Le, “Learning
data augmentation strategies for object detection,” arXiv preprint arXiv:1906.11172,
2019.

[250] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in
ICLR, 2017.

[251] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in CVPR, 2018.

147

Vita

Cihang Xie is completing his Ph.D. degree of Computer Science at the Johns Hopkins

University, under the supervision of Bloomberg Distinguished Professor Alan L. Yuille.

Cihang received his M.S. degree from UCLA in 2015, and B.S. degree from Huazhong

University of Science and Technology in 2014. Cihang’s research interests lie in the

fields of computer vision, deep learning and machine learning. His research goal

is on building human-level computer vision systems, particularly in securing model

performance under the worst-case scenario and endowing models with interpretability.

148

	Abstract
	Acknowledgements
	Dedication
	Contents
	List of Tables
	List of Figures
	Introduction
	Exploring Adversarial Vulnerability
	Exploring Adversarial Defenses
	Exploring Benefits of Robust Learning

	I Adversarial Vulnerability of Deep Neural Networks
	Adversarial Examples for Semantic Segmentation and Object Detection
	Introduction
	Related Work
	Generating Adversarial Examples
	Dense Adversary Generation
	Selecting Input Proposals for Detection
	Quantitative Evaluation
	Fancy Adversarial/Fooling Images
	Diagnostics

	Transferring Adversarial Perturbations
	Cross-Training Transfer
	Cross-Network Transfer
	Cross-Task Transfer
	Combining Heterogeneous Perturbations
	Black-Box Attack

	Universal Physical Camouflage Attacks
	Summary

	Improving Transferability of Adversarial Examples with Input Diversity
	Introduction
	Related Work
	Approach
	Family of Fast Gradient Sign Methods
	Motivation
	Diverse Input Patterns
	Relationships between Different Attacks
	Attacking an Ensemble of Networks

	Experiments
	Experiment Setup
	Attacking a Single Network
	Attacking an Ensemble of Networks
	Ablation Studies
	NIPS 2017 Adversarial Competition
	Extensions

	Summary

	II Towards Deep Networks Robust to Adversarial Attacks
	Feature Denoising for Improving Adversarial Robustness
	Introduction
	Related Work
	Feature Noise
	Denoising Feature Maps
	Denoising Block
	Denoising Operations

	Adversarial Training
	Experiments
	Against White-box Attacks
	Against Black-Box Attacks
	Denoising Blocks in Non-Adversarial Settings

	Summary

	Smooth Adversarial Training
	Introduction
	Related Works
	ReLU Weakens Adversarial Training
	Adversarial Training
	How Gradient Quality Affects Adversarial Training?
	Can Other Training Enhancements Remedy ReLU's Gradient Issue?

	Smooth Adversarial Training
	Adversarial Training with Smooth Activation Functions
	Ruling Out the Effect From x<0
	Case Study: Stabilizing Adversarial Training with ELU using CELU

	Exploring the Limits of Smooth Adversarial Training
	Scaling-up ResNet
	SAT with EfficientNet

	Summary

	Intriguing Properties of Adversarial Training at Scale
	Introduction
	Related Work
	Adversarial Training Framework
	Exploring Normalization Techniques in Adversarial Training
	On the Effects of Clean Images in Adversarial Training
	The Devil is in the Batch Normalization
	Revisiting Statistics Estimation of BN
	Beyond Adversarial Robustness

	Going Deeper in Adversarial Training
	Summary

	III Robust Representation Learning Improves Generalization
	Adversarial Examples Improve Image Recognition
	Introduction
	Related Work
	A Preliminary Way to Boost Performance
	Approach
	Adversarial Training
	Disentangled Learning via An Auxiliary BN
	AdvProp

	Experiments
	Experiments Setup
	ImageNet Results and Beyond
	Comparisons to Adversarial Training
	Ablations

	Summary

	Discussion and Conclusion
	References
	Vita

