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Introduction 

• Deep Learning 

– The state-of-the-art machine learning theory 

– Using a cascade of many layers of non-linear 

neurons for feature extraction and transformation 

– Learning multiple levels of feature representation 

• Higher-level features are derived from lower-level 

features to form a hierarchical architecture 

• Multiple levels of representation correspond to 

different levels of abstraction 
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Introduction (cont.) 

• The Convolutional Neural Networks 

– A fundamental machine learning tool 

– Good performance in a wide range of problems in 

computer vision as well as other research areas 

– Evolutions in many real-world applications 

– Theory: a multi-layer, hierarchical network often 

has a larger capacity, also requires a larger 

amount of data to get trained 
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Adversarial Examples: Introduction 

• What is an adversarial example (in this work)? 

– An image, with a small perturbation added, which 

can still be recognized by humans, but not by the 

computers (deep neural networks) 

– Type 1: an image with clear visual contents is 

recognized incorrectly 

– Type 2: an image with no visual contents is 

recognized as a non-understandable class 
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Adversarial Examples: Type 1 

• Slightly perturbed natural images that are 

completely wrongly recognized 

– Example from [Goodfellow, ICLR'15] 
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Adversarial Examples: Type 2 

• Meaningless patterns 

that are recognized as 

object classes with a 

very high confidence 

– Examples from 

[Nguyen, CVPR'14] 
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Previous Work 

• Generating adversarial examples 

– Steepest gradient descent [Szegedy, ICLR'14], 

gradient sign [Goodfellow, ICLR'15], universal 

adversarial attack [M-Dezfooli, CVPR'17], etc. 

• Defending adversarial examples 

– Distillation [Papernot, IEEE-SSP'16], large-scale 

learning [Kukarin, ICLR'17], ensemble [Tramer, 

arXiv'17], detection [Metzen, ICLR'17], 

raŶdoŵizatioŶ [Xie, arXiv’17], etc. 

10/11/2017 ICCV 2017 - Presentation 10 



Why Adversaries Exist? 

• Opinion 1: deep networks are too complicated 

so that the high-dimensional space contains 

many non-linear or unexplainable structures, 

or they are too sensitive to small noise 

• Opinion 2: deep networks are still too simple 

to defend these malignant attacks 

• Opinion 3: deep networks are not the model 

we want! 
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Our Contribution 

• We extend the adversarial examples to both 

semantic segmentation and object detection 

– We are the first to achieve this goal systematically 

• We evaluated both white-box attack and 

black-box attack tasks 

– White-box: the network parameters are known 

– Black-box: the network parameters are unknown 

(transferring the adversarial perturbations) 
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Some Typical Results 
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Original Image 

Added Perturbation (10x) 

Original Segmentation 

Attacked Segmentation 

Original Detection 

Attacked Detection 



Formulation: Optimization Goal 
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•   



Formulation: Optimization Goal 
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•   



Dense Adversarial Generation 

• A white-box attack 

– Image and network 

dependent 

• Flowchart 

– Defining the active set 

– Gradient descent 

– Until convergence 
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Comments on Object Detection 

• We attacked a type of frameworks, which first 

extract a number of proposals, then assign a 

class label for each proposal 

• A possibility: the adversarial perturbation 

changes the set of proposals, and our attack 

will not work on the new proposals 

– That is why we need to generate dense bounding 

boxes (see the next page) 
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Diagnosis: Denseness 
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• Denseness: the number of generated boxes in 

object detection task (the more the better) 

– Controlled by the non-maximum-suppression 

ratio 



Diagnosis: Convergence 
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•   



Diagnosis: Perceptibility 

•   
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Some Typical Results 
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White-Box Attack: Definition 

•   
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White-Box Attack: Results 

• Semantic segmentation part 

– FCN and DeepLab were evaluated 

– Bold numbers indicate white-box attacks 
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White-Box Attack: Results 

• Object recognition part 

– Faster-RCNN and R-FCN were evaluated 

– Bold numbers indicate white-box attacks 
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White-Box Attack: Examples 
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Original Image 

Original Image 

Added Perturbation (10x) 

Added Perturbation (10x) 

Attacked Segmentation 

Attacked Segmentation 
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Black-Box Attack: Definition 

•   
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Black-Box Attack: Results 

• Semantic segmentation part 

– Transfer across different training sets 

– Transfer across different networks 
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Black-Box Attack: Results 

• Object recognition part 

– Transfer across different training sets 

– Transfer across different networks 

10/11/2017 ICCV 2017 - Presentation 31 



Black-Box Attack: Results 

• Transfer across different tasks 

– This is the most challenging task investigated 

– Ensemble is the only way of enhancing attack 
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Black-Box Attack: Facts 

• Black-box attack is much more difficult 

– The difficulty goes up with the difference between 

the source and target networks 

• "Difficulty levels" in transfer 

– Level 1: across different datasets 

– Level 2: across different network structures 

• Shallower networks are not easier to attack 

– Level 3: across different vision tasks 

• Same network structure makes things easier 
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Black-Box Attack: Examples 
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Different Geometric Patterns 
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An adversarial example for both detection and segmentation 
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The top row shows FR-VGG-07 and FR-ZF-07 detection results, and the bottom row shows FCN-Alex and FCN-

VGG segmentation results. The blue in segmentation results corresponds to boat. 



Same adversarial example, Completely different Outputs 
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We add one adversarial perturbation (magnified by 10) to the same original image to generate different pre-

specified segmentation masks on two deep segmentation networks (FCN-Alex and FCN-VGG). This is a more 

difficult task compared to that shown in previous figure, where two different adversarial perturbations are used to 

generate two pre-specified segmentation masks. The blue regions in the segmentation masks are predicted as 

bus, a randomly selected class. 
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Conclusions 

• Adversarial examples exist in both semantic 

segmentation and object detection 

– A simple algorithm based on gradient descent 

– The target can be arbitrary to some extents 

• White-box attack: efficient and effective 

• Black-box attack: a more challenging problem 

– Transfer across datasets, networks and tasks 

– Ensemble is an effective solution 
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Future Work 

• Defending adversarial attacks 

– Attack vs. defense: which one is stronger? 

• Finding out the reason of adversarial 

examples in the context of deep neural 

networks 

• Integrating adversarial examples in training 

deep neural networks 
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Thank you! 

Questions please? 
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