

Feature Denoising for Improving Adversarial Robustness

Cihang Xie Johns Hopkins University

• Background

• Towards Robust Adversarial Defense

Deep networks are **Good**

Deep Networks

Label: King Penguin

Deep networks are **FRAGILE** to small & carefully crafted perturbations

Label: Chihuahua

Deep networks are **FRAGILE** to small & carefully crafted perturbations

We call such images as **Adversarial Examples**

Adversarial Examples can exist on **Different Tasks**

semantic segmentation

pose estimation

text classification

[1] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. "Adversarial examples for semantic segmentation and object detection." In ICCV. 2017.

[2] Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. "Houdini: Fooling deep structured prediction models." In NeurIPS. 2018.

[3] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. "HotFlip: White-Box Adversarial Examples for Text Classification." In ACL. 2018.

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mood of optimism. 57% World

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mooP of optimism. 95% Sci/Tech

Adversarial Examples can be created other than Adding Perturbation

[4] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. "Spatially transformed adversarial examples." In ICLR. 2018.
[5] Jianyu Wang, Zhishuai Zhang, Cihang Xie, et al. "Visual concepts and compositional voting." In Annals of Mathematical Sciences and Applications. 2018.

Adversarial Examples can exist on The Physical World

[6] Lifeng Huang, Chengying Gao, Yuyin Zhou, Changqing Zou, Cihang Xie, Alan Yuille, Ning Liu. "UPC: Learning Universal Physical Camouflage Attacks on Object Detectors," Arxiv, 2019

Generating Adversarial Example is **SIMPLE**:

maximize loss($f(x+\Gamma)$, y^{true} ; θ) Maximize the loss function w.r.t. Adversarial Perturbation r

Generating Adversarial Example is **SIMPLE**:

- Background
- Towards Robust Adversarial Defense

Label: King Penguin

Observation: Adversarial perturbations are **SMALL** on the pixel space

Observation: Adversarial perturbations are **BIG** on the feature space

Observation: Adversarial perturbations are **BIG** on the feature space

Our Solution: Denoising at feature level

Traditional Image Denoising Operations:

Local filters (predefine a local region $\Omega(i)$ for each pixel i):

• Bilateral filter
$$y_i = \frac{1}{C(x_i)} \sum_{\forall j \in \Omega(i)} f(x_i, x_j) x_j$$

• Median filter
$$y_i = median\{\forall j \in \Omega(i): x_j\}$$

• Mean filter
$$y_i = \frac{1}{C(x_i)} \sum_{\forall j \in \Omega(i)} x_j$$

Non-local filters (the local region $\Omega(i)$ is the whole image I):

• Non-local means
$$y_i = \frac{1}{C(x_i)} \sum_{\forall j \in I} f(x_i, x_j) x_j$$

Denoising Block Design

Denoising operations may lose information

• we add a **residual connection** to balance the tradeoff between removing noise and retaining original signal

Training Strategy: Adversarial training

• Core Idea: train with adversarial examples

Training Strategy: Adversarial training

• Core Idea: train with adversarial examples

Training Strategy: Adversarial training

• Core Idea: train with adversarial examples

Two Ways for Evaluating Robustness

Defending Against White-box Attacks

- Attackers know everything about models
- Directly maximize loss(f(x+r), y^{true}; θ)

Two Ways for Evaluating Robustness

Defending Against White-box Attacks

- Attackers know everything about models
- Directly maximize loss(f(x+r), y^{true}; θ)

Defending Against Blind Attacks

- Attackers know nothing about models
- Attackers generate adversarial examples using substitute networks (rely on transferability)

Defending Against White-box Attacks

• Evaluating against adversarial attackers with attack iteration up to 2000 (more attack iterations indicate stronger attacks)

Defending Against White-box Attacks – Part I

Defending Against White-box Attacks – Part I

Defending Against White-box Attacks – Part II

All denoising operations can help

Defending Against White-box Attacks – Part III

Defending Against White-box Attacks – Part III

Defending Against Blind Attacks

- Offline evaluation against 5 BEST attackers from NeurIPS Adversarial Competition 2017
- Online competition against 48 UNKNOWN attackers in CAAD 2018

Defending Against Blind Attacks

- Offline evaluation against 5 BEST attackers from NeurIPS Adversarial Competition 2017
- Online competition against 48 UNKNOWN attackers in CAAD 2018

CAAD 2018 "all or nothing" criterion: an image is considered correctly classified only if the model correctly classifies all adversarial versions of this image created by all attackers

Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	46.4
+all denoise: non-local, Gaussian	49.5

Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	<u>46.4</u>
+all denoise: non-local, Gaussian	49.5

Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	46.4
+all denoise: non-local, Gaussian	49.5

Defending Against Blind Attacks --- CAAD 2018 Online Competition

Visualization

Adversarial Examples

Before denoising

After denoising

0.8

0.6

0.4

0.2

2.4

1.8

1.2

0.6

1.5

0.5

Defending against adversarial attacks is still a long way to go...

Questions?