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Deep networks are FRAGILE to small & carefully crafted perturbations



king penguin adversarial perturbation chihuahuaking penguin adversarial perturbation chihuahuaking penguin adversarial perturbation chihuahua

Deep networks are FRAGILE to small & carefully crafted perturbations

We call such images as 
Adversarial Examples



Adversarial Examples can exist on Different Tasks

semantic segmentation pose estimation text classification
[1] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. "Adversarial examples for semantic segmentation and object detection." In ICCV. 2017.
[2] Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. "Houdini: Fooling deep structured prediction models." In NeurIPS. 2018.
[3] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. "HotFlip: White-Box Adversarial Examples for Text Classification." In ACL. 2018.



Adversarial Examples can be created other than Adding Perturbation

[4] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. "Spatially transformed adversarial examples." In ICLR. 2018.
[5] Jianyu Wang, Zhishuai Zhang, Cihang Xie, et al. "Visual concepts and compositional voting." In Annals of Mathematical Sciences and Applications. 2018 .
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Adversarial Examples can exist on The Physical World

[6] Lifeng Huang, Chengying Gao, Yuyin Zhou, Changqing Zou, Cihang Xie, Alan Yuille, Ning Liu. "UPC: Learning Universal Physical Camouflage Attacks on Object Detectors," Arxiv, 2019



Generating Adversarial Example is SIMPLE:

maximize loss(f(x+r), ytrue; θ)

Maximize the loss function w.r.t. Adversarial Perturbation r



Generating Adversarial Example is SIMPLE:

maximize loss(f(x+r), ytrue; θ)

minimize loss(f(x), ytrue; θ); 

Maximize the loss function w.r.t. Adversarial Perturbation r

Minimize the loss function w.r.t. Network Parameters θ



● Background

● Towards Robust Adversarial Defense
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Observation: Adversarial perturbations are SMALL on the pixel space
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Observation: Adversarial perturbations are BIG on the feature space
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Observation: Adversarial perturbations are BIG on the feature space

We should DENOISE these feature maps



Our Solution: Denoising at feature level

Traditional Image Denoising Operations: 

Local filters (predefine a local region Ω " for each pixel i):

● Bilateral filter           #$ = &
'()*)

∑∀.∈0 $ 1 2$, 2. 2.

● Median filter            #$ = 456"78 ∀9 ∈ Ω " : 2.

● Mean filter               #$ = &
'()*)

∑∀.∈0 $ 2.

Non-local filters (the local region Ω " is the whole image I):

● Non-local means    #$ = &
'()*)

∑∀.∈; 1 2$, 2. 2.



Denoising Block Design

1×1 conv

denoising
operation

Denoising operations may lose information

• we add a residual connection to balance the tradeoff between 
removing noise and retaining original signal 



Training Strategy: Adversarial training

● Core Idea: train with adversarial examples



min
θ
max
&

loss(f(x+r),ytrue; θ)

max step: generate adversarial perturbation

Training Strategy: Adversarial training

● Core Idea: train with adversarial examples



min
θ
max
&

loss(f(x+r),ytrue; θ)

max step: generate adversarial perturbation

min step: optimize network parameters

Training Strategy: Adversarial training

● Core Idea: train with adversarial examples



Two Ways for Evaluating Robustness

Defending Against White-box Attacks

● Attackers know everything about models

● Directly maximize loss(f(x+r), ytrue; θ)



Two Ways for Evaluating Robustness

Defending Against White-box Attacks

● Attackers know everything about models

● Directly maximize loss(f(x+r), ytrue; θ)

Defending Against Blind Attacks

● Attackers know nothing about models

● Attackers generate adversarial examples using substitute networks 
(rely on transferability)



Defending Against White-box Attacks

● Evaluating against adversarial attackers with attack iteration up to 2000
(more attack iterations indicate stronger attacks)



Defending Against White-box Attacks – Part I
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A successful adversarial training can 
give us a STRONG baseline



Defending Against White-box Attacks – Part I
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Feature Denoising can give us 
additional benefits



Defending Against White-box Attacks – Part II
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All denoising operations can help



Defending Against White-box Attacks – Part III
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Feature Denoising is nearly as powerful 
as adding ~500 additional layers



Defending Against White-box Attacks – Part III
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Feature Denoising can still provide 
benefits for the VERY deep ResNet-638



Defending Against Blind Attacks 

● Offline evaluation against 5 BEST attackers from NeurIPS Adversarial Competition 2017

● Online competition against 48 UNKNOWN attackers in CAAD 2018



Defending Against Blind Attacks 

● Offline evaluation against 5 BEST attackers from NeurIPS Adversarial Competition 2017

● Online competition against 48 UNKNOWN attackers in CAAD 2018

CAAD 2018 “all or nothing” criterion: an image is considered correctly classified only if 
the model correctly classifies all adversarial versions of this image created by all attackers



Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation



Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation



Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation



Defending Against Blind Attacks --- CAAD 2018 Online Competition
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Visualization
Before denoising After denoisingAdversarial Examples
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Defending against adversarial attacks is still a long way to go… 



Questions?


