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e Background

e Towards Robust Adversarial Defense



Deep networks are Good
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Deep networks are FRAGILE to small & carefully crafted perturbations
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Deep networks are FRAGILE to small & carefully crafted perturbations

We call such images as
Adversarial Examples




Adversarial Examples can exist on Different Tasks

South Africa’s historic Soweto township marks its
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semantic segmentation pose estimation text classification
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Adversarial Examples can be created other than Adding Perturbation
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[4] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. "Spatially transformed adversarial examples." In ICLR. 2018.
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Adversarial Examples can exist on The Physical World

[6] Lifeng Huang, Chengying Gao, Yuyin Zhou, Changging Zou, Cihang Xie, Alan Yuille, Ning Liu. "UPC: Learning Universal Physical Camouflage Attacks on Object Detectors," Arxiv, 2019



Generating Adversarial Example is SIMPLE:

maximize loss(f(x+I), yt''¢; 8)

|

Maximize the loss function w.r.t. Adversarial Perturbation r




Generating Adversarial Example is SIMPLE:

maximize loss(f(x+I), yt''¢; 8)

|

Maximize the loss function w.r.t. Adversarial Perturbation r

minimize loss(f(x), ytve; 0);

|

Minimize the loss function w.r.t. Network Parameters 0
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Observation: Adversarial perturbations are SMALL on the pixel space
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Observation: Adversarial perturbations are BIG on the feature space

Adversarial




Observation: Adversarial perturbations are BIG on the feature space

Clean

Adversarial

We should DENOISE these feature maps



Our Solution: Denoising at feature level

Traditional Image Denoising Operations:

Local filters (predefine a local region Q(i) for each pixel i):

. . 1
e Bilateral filter yi = @Zvjeg(i)f(xi' xj)xj
e Median filter Vi = median{‘v’j € Q(i): xj}
_ 1
e Mean filter Vi = @Zvjeﬂ(i) Xj

Non-local filters (the local region Q(i) is the whole image |):

1
e Non-local means y; = @Zvjelf(xi,xj)xj



Denoising Block Design

Denoising operations may lose information

e we add a residual connection to balance the tradeoff between

denoising _ _ o o .
removing noise and retaining original signal

operation

N )




Training Strategy: Adversarial training

e Core ldea: train with adversarial examples



Training Strategy: Adversarial training

e Core ldea: train with adversarial examples

mein max loss(f(x+r),ytrue; 6)
r
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max step: generate adversarial perturbation




Training Strategy: Adversarial training

e Core ldea: train with adversarial examples

mein max loss(f(x+r),ytrue; 6)
r

— /
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max step: generate adversarial perturbation

min step: optimize network parameters



Two Ways for Evaluating Robustness

Defending Against White-box Attacks

e Attackers know everything about models

e Directly maximize loss(f(x+r), yt"ue¢; 6)



Two Ways for Evaluating Robustness

Defending Against White-box Attacks

e Attackers know everything about models

e Directly maximize loss(f(x+r), yt"ue¢; 6)

Defending Against Blind Attacks

o Attackers know nothing about models

o Attackers generate adversarial examples using substitute networks
(rely on transferability)



Defending Against White-box Attacks

e Evaluating against adversarial attackers with attack iteration up to 2000
(more attack iterations indicate stronger attacks)



Defending Against White-box Attacks — Part |
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Defending Against White-box Attacks — Part |
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Defending Against White-box Attacks — Part |
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Defending Against White-box Attacks — Part Il

—0— ResNet-152
60 - ResNet-152, denoise
—&— ResNet-638
58 57.3
%6 55,
54 |
£ lgos
552 -
©
3
O 50
©
48
6l ‘;Z:L. .......... ¢ Feature Denoising is nearly as powerful
' as adding ~500 additional layers
44 -
4z 1.7
10 20 30 40 50 60 70 80 90 100

attack iterations



Defending Against White-box Attacks — Part Il

accuracy (%)
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Defending Against Blind Attacks

o Offline evaluation against 5 BEST attackers from NeurlPS Adversarial Competition 2017

e Online competition against 48 UNKNOWN attackers in CAAD 2018



Defending Against Blind Attacks

o Offline evaluation against 5 BEST attackers from NeurlPS Adversarial Competition 2017

e Online competition against 48 UNKNOWN attackers in CAAD 2018

CAAD 2018 “all or nothing” criterion: an image is considered correctly classified only if
the model correctly classifies all adversarial versions of this image created by all attackers



Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model accuracy (%)
CAAD 2017 winner 10.04
i 134 |
ours, R-152 baseline 1 43.1 |
+4 denoise: null (1x1 only) 44.1
+4 denoise: non-local, dot product 46.2
+4 denoise: non-local, Gaussian 46.4

+all denoise: non-local, Gaussian 49.5
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Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model accuracy (%)
CAAD 2017 winner 0.04
ours, R-152 baseline 43.1
+4 denoise: null (1x1 only) 44.1
+4 denoise: non-local, dot product 46.2
+4 denoise: non-local, Gaussian i-é-lgzl-i
+all denoise: non-local, Gaussian i_ ﬁl_9_5_ _!



Defending Against Blind Attacks --- CAAD 2018 Online Competition

0 10 20 30 40 50
2nd 40.8
3rd 8.6
4th 3.6
5th 0.6




Visualization

Adversarial Examples Before denoising After denoising
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Defending against adversarial attacks is still a long way to go...
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Questions?



