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Recall: What Are Adversarial Examples

Deep
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Recall: What Are Adversarial Examples

We call such images as
Adversarial Examples




Adversarial Examples Are THREATS 1o Deep Networks

Networks

Label: King Penguin

Icons made by Freepik from www.flaticon.com



Can we use Adversarial Examples to HELP Deep Networks?

e.g., to improve the representation learning?

Networks

Label: King Penguin
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Motivation: Adversarial examples provide VALUABLE & NEW features

insect dog primate

Sample

Tsipras et al. [9] shows that the
loss gradient w.r.t. the input pixel
of adversarially trained models is

HUMAN-ALIGNED

Adv. Training  Vanilla Training

[9] Dimitris Tsipras, et al. "Robustness May Be at Odds with Accuracy." In ICLR, 2019.



Motivation: Adversarial examples provide VALUABLE & NEW features

sketch — turtle

Santurkar et al. [10] shows that an adversarially trained model

are pretty good at tackle several IMAGE SYNTHESIS TASKS

[9] Santurkar, Shibani, et al. "Computer vision with a single (robust) classifier." In NeurlIPS, 2019.



BUT using features from adversarial examples ALONE are NOT ENOUGH
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Training EXCLUSIVELY on adversarial examples DEGRADES performance on clean images



Bridging this distribution mismatch can IMPROVE performance
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Simply FINETUNING with clean images IMPROVES performance on clean images
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Bridging this distribution mismatch can IMPROVE performance
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Our Solution: joint training but with distinction



Our Solution: JOINT TRAINING but with distinction

Finetuning may OVERRIDE features learned from adversarial examples, therefore it is better to
jointly train with adversarial examples and clean images as in [12]

mein[ mlgx loss(f(xadv), ytrue; 8) + loss(f(x), ytrue; 0) ]

— _/ = _
'

adversarial examples clean images

[12] lan Goodfellow, et al. "Explaining and harnessing adversarial examples.” In ICLR, 2015.



Our Solution: joint training BUT WITH DISTINCTION
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Our Solution: joint training BUT WITH DISTINCTION
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(b) Proposed Auxiliary BN Design



Adversarial Propagation (AdvProp)

Algorithm 1: Pseudo code of AdvProp

Data: A set of clean images with labels;
Result: Network parameter 0,

for each training step do
Sample a clean image mini-batch z© with label y;

Generate the corresponding adversarial mini-batch
using the auxiliary BNs;

Compute loss L°(6, z°, y) on clean mini-batch x° using
the main BNs;

Compute loss L* (0, %, y) on adversarial mini-batch z
using the auxiliary BNs;

Minimize the total loss w.r.t. network parameter
argmin L*(0, z%,y) + L°(0,z°,y).

0

a

end
return 6




Adversarial Propagation (AdvProp)
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Only Main BN is used at the inference stage



Backbone --- EfficientNet
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We already know three important scaling factors



Backbone --- EfficientNet
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A Better Scaling-Up Policy



Results on ImageNet
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Results on ImageNet
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Results on ImageNet-C

Networks Mean Corruption l
Error

EfficientNet-B7 59.4%




Results on ImageNet-C

Networks Mean Corruption l
Error
EfficientNet-B7 59.4%

+ AdvProp 52.9% (-6.5%)




Results on ImageNet-C

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Networks Mean Corruption l
Error
EfficientNet-B7 59.4%
+ AdvProp 52.9% (-6.5%)
ResNet-50 74.8%

Brightness Contrast Elasti Pixelate JPEG




Results on ImageNet-A

Fox Squirrel Sea Lion (99%) Dragonfly Manhole Cover (99%) Mushroom

Pretzel (99%) Bullfrog
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Networks Top-1 Accuracy I
EfficientNet-B7 37.7%




Results on ImageNet-A

Fox Squirrel Fox Squirrel (99%)

Networks Top-1 Accuracy I
EfficientNet-B7 37.7%
+ AdvProp 44.7% (+7.0%)




Results on ImageNet-A

Fox Squirrel Sea Lion (99%) Dragonfly Manhole Cover (99%) Mushroom

Pretzel (99%) Bullfrog
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Fox Squirrel (99%)

Networks Top-1 Accuracy I
EfficientNet-B7 37.7%

+ AdvProp 44.7% (+7.0%)

ResNet-50 3.1%




Results on Stylized-ImageNet

goldfinch

Networks Top-1 Accuracy I
EfficientNet-B7 21.8%




Results on Stylized-ImageNet

goldfinch

Networks Top-1 Accuracy I
EfficientNet-B7 21.8%
+ AdvProp 26.6% (+4.8%)




Results on Stylized-ImageNet

goldfinch

Networks Top-1 Accuracy I
EfficientNet-B7 21.8%
+ AdvProp 26.6% (+4.8%)

ResNet-50 8.0%




Ablation --- Comparison to Adversarial Training

How important that we should train with distinction
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Ablation --- Comparison to Adversarial Training

SUBSTANTIAL Improvement on SMALL networks
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Ablation --- Comparison to Adversarial Training

Improvement becomes
smaller on LARGER networks
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Ablation --- Comparison to Adversarial Training

AdvProp demonstrates ADVANTAGES over Adversarial Training



Ablation --- Comparison to Adversarial Training

AdvProp demonstrates ADVANTAGES over Adversarial Training

e AdvProp helps large models to generalize better

Model ImageNet-C [7] | ImageNet-A [#] | Stylized-ImageNet [4]
mCE | Top-1 Acc. T Top-1 Acc.

B6 + Adv. Training 55.8 37.0 24.7

B6 + AdvProp (ours) 53.6 40.6 25.9

B7 + Adv. Training 56.0 40.4 25.1

B7 + AdvProp (ours) 52.9 44.7 26.6




Ablation --- Comparison to Adversarial Training

AdvProp demonstrates ADVANTAGES over Adversarial Training

e AdvProp helps large models to generalize better

Model

ImageNet-C [7]

ImageNet-A [¢]

Stylized-ImageNet [4]

mCE | Top-1 Acc. T Top-1 Acc.
B6 + Adv. Training 55.8 37.0 24.7
B6 + AdvProp (ours) 53.6 40.6 25.9
B7 + Adv. Training 56.0 40.4 25.1
B7 + AdvProp (ours) 52.9 44.7 26.6

e AdvProp is more general to other network architectures

ResNet-50 | ResNet-101 | ResNet-152 | ResNet-200
Vanilla Training 76.7 78.3 79.0 19.5
Adversarial Training -3.2 -1.8 -2.0 -1.4
AdvProp (ours) +0.4 +0.6 +0.8 +0.8




Ablation --- Fine-Grained AdvProp

Core idea: maintain SEPARATE BNs for different distributions



Ablation --- Fine-Grained AdvProp

Core idea: maintain SEPARATE BNs for different distributions

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy 4 Sub polxcy 5

Y

Equalize, 0.4,4  Solarize, 0.6,3  Posterize, 0.8, 5 Rotate, 0.2, 3 Equalize, 0.6, 8
Rotate, 0.8, 8 Equalize, 0.6, 7  Equalize, 1.0,2  Solarize, 0.6,8  Posterize, 0.4, 6

Batch 1

Batch 2

1

Augmentation policy may produce a
different distribution to clean images?



Ablation --- Fine-Grained AdvProp

Core idea: maintain SEPARATE BNs for different distributions

RelLU
BN Auxiliary BN Auxiliary BN,
conv
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Fine-Grained AdvProp



Ablation --- Fine-Grained AdvProp

Core idea: maintain SEPARATE BNs for different distributions

N

Auxiliary BN, Auxiliary BN,

Xclean ’ Xau;/ Xadv

conv

I

Xadv' Xaug’ Xclean

ReLU

Fine-Grained AdvProp

I BO | Bl B2 | B3 B4 B5 || B6 B7

AdvProp i77.6 79.6 | 80.5 | 81.9 | 83.3 84.3i 84.8 | 85.2

Fine-Grained AdvProp |}77.9 | 79.8 | 80.7 | 82.0 | 83.5 | 84.4} 84.8 | 85.2



Ablation --- New SOTA on ImageNet without extra data

~10X LESS parameters
~3,000X LESS training data
BETTER performance

BUT new SOTA on ImageNet

# Params | Extra Data | Top-1 Acc.
EfficientNet-B8 + AdvProp 88M X 85.5%
ResNeXt-101 32x48d [20] 829M 3000 x more 85.4%



Questions?



